Goto

Collaborating Authors

When Does Bounded-Optimal Metareasoning Favor Few Cognitive Systems?

AAAI Conferences

While optimal metareasoning is notoriously intractable, humans are nonetheless able to adaptively allocate their computational resources. A possible approximation that humans may use to do this is to only metareason over a finite set of cognitive systems that perform variable amounts of computation. The highly influential "dual-process" accounts of human cognition, which postulate the coexistence of a slow accurate system with a fast error-prone system, can be seen as a special case of this approximation. This raises two questions: how many cognitive systems should a bounded optimal agent be equipped with and what characteristics should those systems have? We investigate these questions in two settings: a one-shot decision between two alternatives, and planning under uncertainty in a Markov decision process. We find that the optimal number of systems depends on the variability of the environment and the costliness of metareasoning. Consistent with dual-process theories, we also find that when having two systems is optimal, then the first system is fast but error-prone and the second system is slow but accurate.


Learning to select computations

arXiv.org Artificial Intelligence

The efficient use of limited computational resources is an essential ingredient of intelligence. Selecting computations optimally according to rational metareasoning would achieve this, but this is computationally intractable. Inspired by psychology and neuroscience, we propose the first concrete and domain-general learning algorithm for approximating the optimal selection of computations: Bayesian metalevel policy search (BMPS). We derive this general, sample-efficient search algorithm for a computation-selecting metalevel policy based on the insight that the value of information lies between the myopic value of information and the value of perfect information. We evaluate BMPS on three increasingly difficult metareasoning problems: when to terminate computation, how to allocate computation between competing options, and planning. Across all three domains, BMPS achieved near-optimal performance and compared favorably to previously proposed metareasoning heuristics. Finally, we demonstrate the practical utility of BMPS in an emergency management scenario, even accounting for the overhead of metareasoning.


Algorithm selection by rational metareasoning as a model of human strategy selection

Neural Information Processing Systems

Selecting the right algorithm is an important problem in computer science, because the algorithm often has to exploit the structure of the input to be efficient. The human mind faces the same challenge. Therefore, solutions to the algorithm selection problem can inspire models of human strategy selection and vice versa. Here, we view the algorithm selection problem as a special case of metareasoning and derive a solution that outperforms existing methods in sorting algorithm selection. We apply our theory to model how people choose between cognitive strategies and test its prediction in a behavioral experiment.


Have I done enough planning or should I plan more?

arXiv.org Artificial Intelligence

People's decisions about how to allocate their limited computational resources are essential to human intelligence. An important component of this metacognitive ability is deciding whether to continue thinking about what to do and move on to the next decision. Here, we show that people acquire this ability through learning and reverse-engineer the underlying learning mechanisms. Using a process-tracing paradigm that externalises human planning, we find that people quickly adapt how much planning they perform to the cost and benefit of planning. To discover the underlying metacognitive learning mechanisms we augmented a set of reinforcement learning models with metacognitive features and performed Bayesian model selection. Our results suggest that the metacognitive ability to adjust the amount of planning might be learned through a policy-gradient mechanism that is guided by metacognitive pseudo-rewards that communicate the value of planning.


Improving Human Decision-Making by Discovering Efficient Strategies for Hierarchical Planning

arXiv.org Artificial Intelligence

To make good decisions in the real world people need efficient planning strategies because their computational resources are limited. Knowing which planning strategies would work best for people in different situations would be very useful for understanding and improving human decision-making. But our ability to compute those strategies used to be limited to very small and very simple planning tasks. To overcome this computational bottleneck, we introduce a cognitively-inspired reinforcement learning method that can overcome this limitation by exploiting the hierarchical structure of human behavior. The basic idea is to decompose sequential decision problems into two sub-problems: setting a goal and planning how to achieve it. This hierarchical decomposition enables us to discover optimal strategies for human planning in larger and more complex tasks than was previously possible. The discovered strategies outperform existing planning algorithms and achieve a super-human level of computational efficiency. We demonstrate that teaching people to use those strategies significantly improves their performance in sequential decision-making tasks that require planning up to eight steps ahead. By contrast, none of the previous approaches was able to improve human performance on these problems. These findings suggest that our cognitively-informed approach makes it possible to leverage reinforcement learning to improve human decision-making in complex sequential decision-problems. Future work can leverage our method to develop decision support systems that improve human decision making in the real world.