Collaborating Authors

Estimating the Bayes Risk from Sample Data

Neural Information Processing Systems

In this setting, each pattern, represented as an n-dimensional feature vector, is associated with a discrete pattern class, or state of nature (Duda and Hart, 1973). Using available information, (e.g., a statistically representative set of labeled feature vectors

Choice of neighbor order in nearest-neighbor classification Machine Learning

The $k$th-nearest neighbor rule is arguably the simplest and most intuitively appealing nonparametric classification procedure. However, application of this method is inhibited by lack of knowledge about its properties, in particular, about the manner in which it is influenced by the value of $k$; and by the absence of techniques for empirical choice of $k$. In the present paper we detail the way in which the value of $k$ determines the misclassification error. We consider two models, Poisson and Binomial, for the training samples. Under the first model, data are recorded in a Poisson stream and are "assigned" to one or other of the two populations in accordance with the prior probabilities. In particular, the total number of data in both training samples is a Poisson-distributed random variable. Under the Binomial model, however, the total number of data in the training samples is fixed, although again each data value is assigned in a random way. Although the values of risk and regret associated with the Poisson and Binomial models are different, they are asymptotically equivalent to first order, and also to the risks associated with kernel-based classifiers that are tailored to the case of two derivatives. These properties motivate new methods for choosing the value of $k$.

Generative Local Metric Learning for Nearest Neighbor Classification

Neural Information Processing Systems

We consider the problem of learning a local metric to enhance the performance of nearest neighbor classification. Conventional metric learning methods attempt to separate data distributions in a purely discriminative manner; here we show how to take advantage of information from parametric generative models. We focus on the bias in the information-theoretic error arising from finite sampling effects, and find an appropriate local metric that maximally reduces the bias based upon knowledge from generative models. As a byproduct, the asymptotic theoretical analysis in this work relates metric learning with dimensionality reduction, which was not understood from previous discriminative approaches. Empirical experiments show that this learned local metric enhances the discriminative nearest neighbor performance on various datasets using simple class conditional generative models.

Nearest-Neighbor Sample Compression: Efficiency, Consistency, Infinite Dimensions

Neural Information Processing Systems

We examine the Bayes-consistency of a recently proposed 1-nearest-neighbor-based multiclass learning algorithm. This algorithm is derived from sample compression bounds and enjoys the statistical advantages of tight, fully empirical generalization bounds, as well as the algorithmic advantages of a faster runtime and memory savings. We prove that this algorithm is strongly Bayes-consistent in metric spaces with finite doubling dimension --- the first consistency result for an efficient nearest-neighbor sample compression scheme. Rather surprisingly, we discover that this algorithm continues to be Bayes-consistent even in a certain infinite-dimensional setting, in which the basic measure-theoretic conditions on which classic consistency proofs hinge are violated. This is all the more surprising, since it is known that k-NN is not Bayes-consistent in this setting. We pose several challenging open problems for future research.

An improvement to k-nearest neighbor classifier Machine Learning

K-Nearest neighbor classifier (k-NNC) is simple to use and has little design time like finding k values in k-nearest neighbor classifier, hence these are suitable to work with dynamically varying data-sets. There exists some fundamental improvements over the basic k-NNC, like weighted k-nearest neighbors classifier (where weights to nearest neighbors are given based on linear interpolation), using artificially generated training set called bootstrapped training set, etc. These improvements are orthogonal to space reduction and classification time reduction techniques, hence can be coupled with any of them. The paper proposes another improvement to the basic k-NNC where the weights to nearest neighbors are given based on Gaussian distribution (instead of linear interpolation as done in weighted k-NNC) which is also independent of any space reduction and classification time reduction technique. We formally show that our proposed method is closely related to non-parametric density estimation using a Gaussian kernel. We experimentally demonstrate using various standard data-sets that the proposed method is better than the existing ones in most cases.