Goto

Collaborating Authors

Multisensory Encoding, Decoding, and Identification

Neural Information Processing Systems

We investigate a spiking neuron model of multisensory integration. Multiple stimuli from different sensory modalities are encoded by a single neural circuit comprised of a multisensory bank of receptive fields in cascade with a population of biophysical spike generators. We demonstrate that stimuli of different dimensions can be faithfully multiplexed and encoded in the spike domain and derive tractable algorithms for decoding each stimulus from the common pool of spikes. We also show that the identification of multisensory processing in a single neuron is dual to the recovery of stimuli encoded with a population of multisensory neurons, and prove that only a projection of the circuit onto input stimuli can be identified. We provide an example of multisensory integration using natural audio and video and discuss the performance of the proposed decoding and identification algorithms.


Your Senses Are Talking Behind Your Back

WIRED

My parents and I used to eat at a restaurant where I would spend the entire dinner interrogating them why in the world the lights were so dim. Displaying great patience (or maybe great hunger), they would calmly repeat, "It's for ambiance." The restaurant was trying to maintain the mood, they said, to add a certain something to the meal. I stubbornly maintained that seeing my food could only add to the sensation of tasting it. The restaurant has since closed (probably because no one could see their food), but researchers are just beginning to understand the complex web of communication between the senses.


Sensory Integration and Density Estimation

Neural Information Processing Systems

The integration of partially redundant information from multiple sensors is a standard computational problem for agents interacting with the world. In man and other primates, integration has been shown psychophysically to be nearly optimal in the sense of error minimization. An influential generalization of this notion of optimality is that populations of multisensory neurons should retain all the information from their unisensory afferents about the underlying, common stimulus [1]. More recently, it was shown empirically that a neural network trained to perform latent-variable density estimation, with the activities of the unisensory neurons as observed data, satisfies the information-preservation criterion, even though the model architecture was not designed to match the true generative process for the data [2]. We prove here an analytical connection between these seemingly different tasks, density estimation and sensory integration; that the former implies the latter for the model used in [2]; but that this does not appear to be true for all models.


A Maximum-Likelihood Approach to Modeling Multisensory Enhancement

Neural Information Processing Systems

Multisensory response enhancement (MRE) is the augmentation of the response of a neuron to sensory input of one modality by simultaneous inputfrom another modality. The maximum likelihood (ML) model presented here modifies the Bayesian model for MRE (Anastasio et al.) by incorporating a decision strategy to maximize the number of correct decisions. Thus the ML model can also deal with the important tasks of stimulus discrimination and identification inthe presence of incongruent visual and auditory cues. It accounts for the inverse effectiveness observed in neurophysiological recordingdata, and it predicts a functional relation between uni-and bimodal levels of discriminability that is testable both in neurophysiological and behavioral experiments.


Multisensory Encoding, Decoding, and Identification

Neural Information Processing Systems

We investigate a spiking neuron model of multisensory integration. Multiple stimuli from different sensory modalities are encoded by a single neural circuit comprised of a multisensory bank of receptive fields in cascade with a population of biophysical spike generators. We demonstrate that stimuli of different dimensions can be faithfully multiplexed and encoded in the spike domain and derive tractable algorithms for decoding each stimulus from the common pool of spikes. We also show that the identification of multisensory processing in a single neuron is dual to the recovery of stimuli encoded with a population of multisensory neurons, and prove that only a projection of the circuit onto input stimuli can be identified. We provide an example of multisensory integration using natural audio and video and discuss the performance of the proposed decoding and identification algorithms.