Collaborating Authors

Deep Recursive Neural Networks for Compositionality in Language

Neural Information Processing Systems

Recursive neural networks comprise a class of architecture that can operate on structured input. They have been previously successfully applied to model compositionality in natural language using parse-tree-based structural representations. Even though these architectures are deep in structure, they lack the capacity for hierarchical representation that exists in conventional deep feed-forward networks as well as in recently investigated deep recurrent neural networks. In this work we introduce a new architecture --- a deep recursive neural network (deep RNN) --- constructed by stacking multiple recursive layers. We evaluate the proposed model on the task of fine-grained sentiment classification. Our results show that deep RNNs outperform associated shallow counterparts that employ the same number of parameters. Furthermore, our approach outperforms previous baselines on the sentiment analysis task, including a multiplicative RNN variant as well as the recently introduced paragraph vectors, achieving new state-of-the-art results. We provide exploratory analyses of the effect of multiple layers and show that they capture different aspects of compositionality in language.

When Are Tree Structures Necessary for Deep Learning of Representations? Artificial Intelligence

Recursive neural models, which use syntactic parse trees to recursively generate representations bottom-up, are a popular architecture. But there have not been rigorous evaluations showing for exactly which tasks this syntax-based method is appropriate. In this paper we benchmark {\bf recursive} neural models against sequential {\bf recurrent} neural models (simple recurrent and LSTM models), enforcing apples-to-apples comparison as much as possible. We investigate 4 tasks: (1) sentiment classification at the sentence level and phrase level; (2) matching questions to answer-phrases; (3) discourse parsing; (4) semantic relation extraction (e.g., {\em component-whole} between nouns). Our goal is to understand better when, and why, recursive models can outperform simpler models. We find that recursive models help mainly on tasks (like semantic relation extraction) that require associating headwords across a long distance, particularly on very long sequences. We then introduce a method for allowing recurrent models to achieve similar performance: breaking long sentences into clause-like units at punctuation and processing them separately before combining. Our results thus help understand the limitations of both classes of models, and suggest directions for improving recurrent models.

Phrase Type Sensitive Tensor Indexing Model for Semantic Composition

AAAI Conferences

Compositional semantic aims at constructing the meaning of phrases or sentences according to the compositionality of word meanings. In this paper, we propose to synchronously learn the representations of individual words and extracted high-frequency phrases. Representations of extracted phrases are considered as gold standard for constructing more general operations to compose the representation of unseen phrases. We propose a grammatical type specific model that improves the composition flexibility by adopting vector-tensor-vector operations. Our model embodies the compositional characteristics of traditional additive and multiplicative model. Empirical result shows that our model outperforms state-of-the-art composition methods in the task of computing phrase similarities.

Modeling Compositionality with Multiplicative Recurrent Neural Networks Machine Learning

We present the multiplicative recurrent neural network as a general model for compositional meaning in language, and evaluate it on the task of fine-grained sentiment analysis. We establish a connection to the previously investigated matrix-space models for compositionality, and show they are special cases of the multiplicative recurrent net. Our experiments show that these models perform comparably or better than Elman-type additive recurrent neural networks and outperform matrix-space models on a standard fine-grained sentiment analysis corpus. Furthermore, they yield comparable results to structural deep models on the recently published Stanford Sentiment Treebank without the need for generating parse trees.

Fine-grained Sentiment Classification using BERT Machine Learning

Sentiment classification is an important process in understanding people's perception towards a product, service, or topic. Many natural language processing models have been proposed to solve the sentiment classification problem. However, most of them have focused on binary sentiment classification. In this paper, we use a promising deep learning model called BERT to solve the fine-grained sentiment classification task. Experiments show that our model outperforms other popular models for this task without sophisticated architecture. We also demonstrate the effectiveness of transfer learning in natural language processing in the process.