Modeling Short-term Noise Dependence of Spike Counts in Macaque Prefrontal Cortex

Neural Information Processing Systems

Correlations between spike counts are often used to analyze neural coding. The noise is typically assumed to be Gaussian. Yet, this assumption is often inappropriate, especially for low spike counts. In this study, we present copulas as an alternative approach. With copulas it is possible to use arbitrary marginal distributions such as Poisson or negative binomial that are better suited for modeling noise distributions of spike counts. Furthermore, copulas place a wide range of dependence structures at the disposal and can be used to analyze higher order interactions. We develop a framework to analyze spike count data by means of copulas. Methods for parameter inference based on maximum likelihood estimates and for computation of Shannon entropy are provided. We apply the method to our data recorded from macaque prefrontal cortex. The data analysis leads to three significant findings: (1) copula-based distributions provide better fits than discretized multivariate normal distributions; (2) negative binomial margins fit the data better than Poisson margins; and (3) a dependence model that includes only pairwise interactions overestimates the information entropy by at least 19% compared to the model with higher order interactions.

Correlation Coefficients are Insufficient for Analyzing Spike Count Dependencies

Neural Information Processing Systems

The linear correlation coefficient is typically used to characterize and analyze dependencies of neural spike counts. Here, we show that the correlation coefficient is in general insufficient to characterize these dependencies. We construct two neuron spike count models with Poisson-like marginals and vary their dependence structure using copulas. To this end, we construct a copula that allows to keep the spike counts uncorrelated while varying their dependence strength. Moreover, we employ a network of leaky integrate-and-fire neurons to investigate whether weakly correlated spike counts with strong dependencies are likely to occur in real networks. We find that the entropy of uncorrelated but dependent spike count distributions can deviate from the corresponding distribution with independent components by more than 25% and that weakly correlated but strongly dependent spike counts are very likely to occur in biological networks. Finally, we introduce a test for deciding whether the dependence structure of distributions with Poisson-like marginals is well characterized by the linear correlation coefficient and verify it for different copula-based models.

Mixed vine copulas as joint models of spike counts and local field potentials

Neural Information Processing Systems

Concurrent measurements of neural activity at multiple scales, sometimes performed with multimodal techniques, become increasingly important for studying brain function. However, statistical methods for their concurrent analysis are currently lacking. Here we introduce such techniques in a framework based on vine copulas with mixed margins to construct multivariate stochastic models. These models can describe detailed mixed interactions between discrete variables such as neural spike counts, and continuous variables such as local field potentials. We propose efficient methods for likelihood calculation, inference, sampling and mutual information estimation within this framework. We test our methods on simulated data and demonstrate applicability on mixed data generated by a biologically realistic neural network. Our methods hold the promise to considerably improve statistical analysis of neural data recorded simultaneously at different scales.

A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution Machine Learning

The Poisson distribution has been widely studied and used for modeling univariate count-valued data. Multivariate generalizations of the Poisson distribution that permit dependencies, however, have been far less popular. Yet, real-world high-dimensional count-valued data found in word counts, genomics, and crime statistics, for example, exhibit rich dependencies, and motivate the need for multivariate distributions that can appropriately model this data. We review multivariate distributions derived from the univariate Poisson, categorizing these models into three main classes: 1) where the marginal distributions are Poisson, 2) where the joint distribution is a mixture of independent multivariate Poisson distributions, and 3) where the node-conditional distributions are derived from the Poisson. We discuss the development of multiple instances of these classes and compare the models in terms of interpretability and theory. Then, we empirically compare multiple models from each class on three real-world datasets that have varying data characteristics from different domains, namely traffic accident data, biological next generation sequencing data, and text data. These empirical experiments develop intuition about the comparative advantages and disadvantages of each class of multivariate distribution that was derived from the Poisson. Finally, we suggest new research directions as explored in the subsequent discussion section.

Characterizing neural dependencies with copula models

Neural Information Processing Systems

The coding of information by neural populations depends critically on the statistical dependencies between neuronal responses. However, there is no simple model that combines the observations that (1) marginal distributions over single-neuron spike counts are often approximately Poisson; and (2) joint distributions over the responses of multiple neurons are often strongly dependent. Here, we show that both marginal and joint properties of neural responses can be captured using Poisson copula models. Copulas are joint distributions that allow random variables with arbitrary marginals to be combined while incorporating arbitrary dependencies between them. Different copulas capture different kinds of dependencies, allowing for a richer and more detailed description of dependencies than traditional summary statistics, such as correlation coefficients.