Goto

Collaborating Authors

A Survey of Available Corpora for Building Data-Driven Dialogue Systems

arXiv.org Artificial Intelligence

During the past decade, several areas of speech and language understanding have witnessed substantial breakthroughs from the use of data-driven models. In the area of dialogue systems, the trend is less obvious, and most practical systems are still built through significant engineering and expert knowledge. Nevertheless, several recent results suggest that data-driven approaches are feasible and quite promising. To facilitate research in this area, we have carried out a wide survey of publicly available datasets suitable for data-driven learning of dialogue systems. We discuss important characteristics of these datasets, how they can be used to learn diverse dialogue strategies, and their other potential uses. We also examine methods for transfer learning between datasets and the use of external knowledge. Finally, we discuss appropriate choice of evaluation metrics for the learning objective.


Learning to Predict from Textual Data

Journal of Artificial Intelligence Research

Given a current news event, we tackle the problem of generating plausible predictions of future events it might cause. We present a new methodology for modeling and predicting such future news events using machine learning and data mining techniques. Our Pundit algorithm generalizes examples of causality pairs to infer a causality predictor. To obtain precisely labeled causality examples, we mine 150 years of news articles and apply semantic natural language modeling techniques to headlines containing certain predefined causality patterns. For generalization, the model uses a vast number of world knowledge ontologies. Empirical evaluation on real news articles shows that our Pundit algorithm performs as well as non-expert humans.



An Introduction to Conditional Random Fields

arXiv.org Machine Learning

Often we wish to predict a large number of variables that depend on each other as well as on other observed variables. Structured prediction methods are essentially a combination of classification and graphical modeling, combining the ability of graphical models to compactly model multivariate data with the ability of classification methods to perform prediction using large sets of input features. This tutorial describes conditional random fields, a popular probabilistic method for structured prediction. CRFs have seen wide application in natural language processing, computer vision, and bioinformatics. We describe methods for inference and parameter estimation for CRFs, including practical issues for implementing large scale CRFs. We do not assume previous knowledge of graphical modeling, so this tutorial is intended to be useful to practitioners in a wide variety of fields.


Hidden Dynamic Probabilistic Models for Labeling Sequence Data

AAAI Conferences

We propose a new discriminative framework, namely Hidden Dynamic Conditional Random Fields (HD-CRFs), for building probabilistic models which can capture both internal and external class dynamics to label sequence data. We introduce a small number of hidden state variables to model the substructure of a observation sequence and learn dynamics between different class labels. An HDCRF offers several advantages over previous discriminative models and is attractive both, conceptually and computationally. We performed experiments on three well-established sequence labeling tasks in natural language, including part-of-speech tagging, noun phrase chunking, and named entity recognition. The results demonstrate the validity and competitiveness of our model. In addition, our model compares favorably with current state-of-the-art sequence labeling approach, Conditional Random Fields (CRFs), which can only model the external dynamics.