In this paper, we obtain improved running times for regression and top eigenvector computation for numerically sparse matrices. Given a data matrix $\mat{A} \in \R^{n \times d}$ where every row $a \in \R^d$ has $\|a\|_2^2 \leq L$ and numerical sparsity $\leq s$, i.e. $\|a\|_1^2 / \|a\|_2^2 \leq s$, we provide faster algorithms for these problems for many parameter settings. For top eigenvector computation, when $\gap > 0$ is the relative gap between the top two eigenvectors of $\mat{A}^\top \mat{A}$ and $r$ is the stable rank of $\mat{A}$ we obtain a running time of $\otilde(nd + r(s + \sqrt{r s}) / \gap^2)$ improving upon the previous best unaccelerated running time of $O(nd + r d / \gap^2)$. As $r \leq d$ and $s \leq d$ our algorithm everywhere improves or matches the previous bounds for all parameter settings. For regression, when $\mu > 0$ is the smallest eigenvalue of $\mat{A}^\top \mat{A}$ we obtain a running time of $\otilde(nd + (nL / \mu) \sqrt{s nL / \mu})$ improving upon the previous best unaccelerated running time of $\otilde(nd + n L d / \mu)$. This result expands when regression can be solved in nearly linear time from when $L/\mu = \otilde(1)$ to when $L / \mu = \otilde(d^{2/3} / (sn)^{1/3})$. Furthermore, we obtain similar improvements even when row norms and numerical sparsities are non-uniform and we show how to achieve even faster running times by accelerating using approximate proximal point \cite{frostig2015regularizing} / catalyst \cite{lin2015universal}. Our running times depend only on the size of the input and natural numerical measures of the matrix, i.e. eigenvalues and $\ell_p$ norms, making progress on a key open problem regarding optimal running times for efficient large-scale learning.

Xu, Peng, Yang, Jiyan, Roosta-Khorasani, Farbod, Ré, Christopher, Mahoney, Michael W.

We consider the problem of finding the minimizer of a convex function $F: \mathbb R^d \rightarrow \mathbb R$ of the form $F(w) \defeq \sum_{i=1}^n f_i(w) + R(w)$ where a low-rank factorization of $\nabla^2 f_i(w)$ is readily available.We consider the regime where $n \gg d$. We propose randomized Newton-type algorithms that exploit \textit{non-uniform} sub-sampling of $\{\nabla^2 f_i(w)\}_{i=1}^{n}$, as well as inexact updates, as means to reduce the computational complexity, and are applicable to a wide range of problems in machine learning. Two non-uniform sampling distributions based on {\it block norm squares} and {\it block partial leverage scores} are considered. Under certain assumptions, we show that our algorithms inherit a linear-quadratic convergence rate in $w$ and achieve a lower computational complexity compared to similar existing methods. In addition, we show that our algorithms exhibit more robustness and better dependence on problem specific quantities, such as the condition number. We numerically demonstrate the advantages of our algorithms on several real datasets.

Allen-Zhu, Zeyuan, Li, Yuanzhi

We study k-SVD that is to obtain the first k singular vectors of a matrix A. Recently, a few breakthroughs have been discovered on k-SVD: Musco and Musco [1] proved the first gap-free convergence result using the block Krylov method, Shamir [2] discovered the first variance-reduction stochastic method, and Bhojanapalli et al. [3] provided the fastest $O(\mathsf{nnz}(A) + \mathsf{poly}(1/\varepsilon))$-time algorithm using alternating minimization. In this paper, we put forward a new and simple LazySVD framework to improve the above breakthroughs. This framework leads to a faster gap-free method outperforming [1], and the first accelerated and stochastic method outperforming [2]. In the $O(\mathsf{nnz}(A) + \mathsf{poly}(1/\varepsilon))$ running-time regime, LazySVD outperforms [3] in certain parameter regimes without even using alternating minimization.

Ge, Rong, Jin, Chi, Kakade, Sham M., Netrapalli, Praneeth, Sidford, Aaron

This paper considers the problem of canonical-correlation analysis (CCA) (Hotelling, 1936) and, more broadly, the generalized eigenvector problem for a pair of symmetric matrices. These are two fundamental problems in data analysis and scientific computing with numerous applications in machine learning and statistics (Shi and Malik, 2000; Hardoon et al., 2004; Witten et al., 2009). We provide simple iterative algorithms, with improved runtimes, for solving these problems that are globally linearly convergent with moderate dependencies on the condition numbers and eigenvalue gaps of the matrices involved. We obtain our results by reducing CCA to the top-$k$ generalized eigenvector problem. We solve this problem through a general framework that simply requires black box access to an approximate linear system solver. Instantiating this framework with accelerated gradient descent we obtain a running time of $O(\frac{z k \sqrt{\kappa}}{\rho} \log(1/\epsilon) \log \left(k\kappa/\rho\right))$ where $z$ is the total number of nonzero entries, $\kappa$ is the condition number and $\rho$ is the relative eigenvalue gap of the appropriate matrices. Our algorithm is linear in the input size and the number of components $k$ up to a $\log(k)$ factor. This is essential for handling large-scale matrices that appear in practice. To the best of our knowledge this is the first such algorithm with global linear convergence. We hope that our results prompt further research and ultimately improve the practical running time for performing these important data analysis procedures on large data sets.

Bhatia, Kush, Pacchiano, Aldo, Flammarion, Nicolas, Bartlett, Peter L., Jordan, Michael I.

In this paper, we study the problems of principle Generalized Eigenvector computation and Canonical Correlation Analysis in the stochastic setting. We propose a simple and efficient algorithm for these problems. We prove the global convergence of our algorithm, borrowing ideas from the theory of fast-mixing Markov chains and two-Time-Scale Stochastic Approximation, showing that it achieves the optimal rate of convergence. In the process, we develop tools for understanding stochastic processes with Markovian noise which might be of independent interest.