Bandit Learning Through Biased Maximum Likelihood Estimation

arXiv.org Machine Learning

We propose BMLE, a new family of bandit algorithms, that are formulated in a general way based on the Biased Maximum Likelihood Estimation method originally appearing in the adaptive control literature. We design the cost-bias term to tackle the exploration and exploitation tradeoff for stochastic bandit problems. We provide an explicit closed form expression for the index of an arm for Bernoulli bandits, which is trivial to compute. We also provide a general recipe for extending the BMLE algorithm to other families of reward distributions. We prove that for Bernoulli bandits, the BMLE algorithm achieves a logarithmic finite-time regret bound and hence attains order-optimality. Through extensive simulations, we demonstrate that the proposed algorithms achieve regret performance comparable to the best of several state-of-the-art baseline methods, while having a significant computational advantage in comparison to other best performing methods. The generality of the proposed approach makes it possible to address more complex models, including general adaptive control of Markovian systems.


Bayesian Anomaly Detection Using Extreme Value Theory

arXiv.org Machine Learning

Data-driven anomaly detection methods typically build a model for the normal behavior of the target system, and score each data instance with respect to this model. A threshold is invariably needed to identify data instances with high (or low) scores as anomalies. This presents a practical limitation on the applicability of such methods, since most methods are sensitive to the choice of the threshold, and it is challenging to set optimal thresholds. We present a probabilistic framework to explicitly model the normal and anomalous behaviors and probabilistically reason about the data. An extreme value theory based formulation is proposed to model the anomalous behavior as the extremes of the normal behavior. As a specific instantiation, a joint non-parametric clustering and anomaly detection algorithm (INCAD) is proposed that models the normal behavior as a Dirichlet Process Mixture Model. A pseudo-Gibbs sampling based strategy is used for inference. Results on a variety of data sets show that the proposed method provides effective clustering and anomaly detection without requiring strong initialization and thresholding parameters.


Thompson sampling with the online bootstrap

arXiv.org Machine Learning

Thompson sampling provides a solution to bandit problems in which new observations are allocated to arms with the posterior probability that an arm is optimal. While sometimes easy to implement and asymptotically optimal, Thompson sampling can be computationally demanding in large scale bandit problems, and its performance is dependent on the model fit to the observed data. We introduce bootstrap Thompson sampling (BTS), a heuristic method for solving bandit problems which modifies Thompson sampling by replacing the posterior distribution used in Thompson sampling by a bootstrap distribution. We first explain BTS and show that the performance of BTS is competitive to Thompson sampling in the well-studied Bernoulli bandit case. Subsequently, we detail why BTS using the online bootstrap is more scalable than regular Thompson sampling, and we show through simulation that BTS is more robust to a misspecified error distribution. BTS is an appealing modification of Thompson sampling, especially when samples from the posterior are otherwise not available or are costly.


Statistical Anomaly Detection for Train Fleets

AAAI Conferences

We have developed a method for statistical anomaly detection which has been deployed in a tool for condition monitoring of train fleets. The tool is currently used by several railway operators over the world to inspect and visualize the occurrence of event messages generated on the trains. The anomaly detection component helps the operators to quickly find significant deviations from normal behavior and to detect early indications for possible problems. The savings in maintenance costs comes mainly from avoiding costly breakdowns, and have been estimated to several million Euros per year for the tool. In the long run, it is expected that maintenance costs can be reduced with between 5 and 10 % by using the tool.