Goto

Collaborating Authors

Scalable Kernel Methods via Doubly Stochastic Gradients

arXiv.org Machine Learning

The general perception is that kernel methods are not scalable, and neural nets are the methods of choice for nonlinear learning problems. Or have we simply not tried hard enough for kernel methods? Here we propose an approach that scales up kernel methods using a novel concept called "doubly stochastic functional gradients". Our approach relies on the fact that many kernel methods can be expressed as convex optimization problems, and we solve the problems by making two unbiased stochastic approximations to the functional gradient, one using random training points and another using random functions associated with the kernel, and then descending using this noisy functional gradient. We show that a function produced by this procedure after $t$ iterations converges to the optimal function in the reproducing kernel Hilbert space in rate $O(1/t)$, and achieves a generalization performance of $O(1/\sqrt{t})$. This doubly stochasticity also allows us to avoid keeping the support vectors and to implement the algorithm in a small memory footprint, which is linear in number of iterations and independent of data dimension. Our approach can readily scale kernel methods up to the regimes which are dominated by neural nets. We show that our method can achieve competitive performance to neural nets in datasets such as 8 million handwritten digits from MNIST, 2.3 million energy materials from MolecularSpace, and 1 million photos from ImageNet.


Scalable Kernel Methods via Doubly Stochastic Gradients

Neural Information Processing Systems

The general perception is that kernel methods are not scalable, so neural nets become the choice for large-scale nonlinear learning problems. Have we tried hard enough for kernel methods? In this paper, we propose an approach that scales up kernel methods using a novel concept called doubly stochastic functional gradients''. Based on the fact that many kernel methods can be expressed as convex optimization problems, our approach solves the optimization problems by making two unbiased stochastic approximations to the functional gradient---one using random training points and another using random features associated with the kernel---and performing descent steps with this noisy functional gradient. Our algorithm is simple, need no commit to a preset number of random features, and allows the flexibility of the function class to grow as we see more incoming data in the streaming setting.


Hamiltonian ABC

arXiv.org Machine Learning

Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively low-dimensional problems. We introduce Hamiltonian ABC (HABC), a set of likelihood-free algorithms that apply recent advances in scaling Bayesian learning using Hamiltonian Monte Carlo (HMC) and stochastic gradients. We find that a small number forward simulations can effectively approximate the ABC gradient, allowing Hamiltonian dynamics to efficiently traverse parameter spaces. We also describe a new simple yet general approach of incorporating random seeds into the state of the Markov chain, further reducing the random walk behavior of HABC. We demonstrate HABC on several typical ABC problems, and show that HABC samples comparably to regular Bayesian inference using true gradients on a high-dimensional problem from machine learning.


Topmoumoute Online Natural Gradient Algorithm

Neural Information Processing Systems

Guided by the goal of obtaining an optimization algorithm that is both fast and yielding good generalization, we study the descent direction maximizing the decrease in generalization error or the probability of not increasing generalization error. The surprising result is that from both the Bayesian and frequentist perspectives this can yield the natural gradient direction. Although that direction can be very expensive to compute we develop an efficient, general, online approximation to the natural gradient descent which is suited to large scale problems. We report experimental results showing much faster convergence in computation time and in number of iterations with TONGA (Topmoumoute Online natural Gradient Algorithm) than with stochastic gradient descent, even on very large datasets.


Smoothed Gradients for Stochastic Variational Inference

Neural Information Processing Systems

Stochastic variational inference (SVI) lets us scale up Bayesian computation to massive data. It uses stochastic optimization to fit a variational distribution, following easy-to-compute noisy natural gradients. As with most traditional stochastic optimization methods, SVI takes precautions to use unbiased stochastic gradients whose expectations are equal to the true gradients. In this paper, we explore the idea of following biased stochastic gradients in SVI. Our method replaces the natural gradient with a similarly constructed vector that uses a fixed-window moving average of some of its previous terms.