Propagation of Delays in the National Airspace System Artificial Intelligence

The National Airspace System (NAS) is a large and complex system with thousands of interrelated components: administration, control centers, airports, airlines, aircraft, passengers, etc. The complexity of the NAS creates many difficulties in management and control. One of the most pressing problems is flight delay. Delay creates high cost to airlines, complaints from passengers, and difficulties for airport operations. As demand on the system increases, the delay problem becomes more and more prominent. For this reason, it is essential for the Federal Aviation Administration to understand the causes of delay and to find ways to reduce delay. Major contributing factors to delay are congestion at the origin airport, weather, increasing demand, and air traffic management (ATM) decisions such as the Ground Delay Programs (GDP). Delay is an inherently stochastic phenomenon. Even if all known causal factors could be accounted for, macro-level national airspace system (NAS) delays could not be predicted with certainty from micro-level aircraft information. This paper presents a stochastic model that uses Bayesian Networks (BNs) to model the relationships among different components of aircraft delay and the causal factors that affect delays. A case study on delays of departure flights from Chicago O'Hare international airport (ORD) to Hartsfield-Jackson Atlanta International Airport (ATL) reveals how local and system level environmental and human-caused factors combine to affect components of delay, and how these components contribute to the final arrival delay at the destination airport.

Neural Networks for Determining Protein Specificity and Multiple Alignment of Binding Sites

AAAI Conferences

Regulation of gene expression often involves proteins that bind to particular regions of DNA. Determining the binding sites for a protein and its specificity usually requires extensive biochemical and/or genetic experimentation. In this paper we illustrate the use of a neural network to obtain the desired information with much less experimental effort. It is often fairly easy to obtain a set of moderate length sequences, perhaps one or two hundred base-pairs, that each contain binding sites for the protein being studied. For example, the upstream regions of a set of genes that are all regulated by the same protein should each contain binding sites for that protein.

Improved Estimation of Class Prior Probabilities through Unlabeled Data Machine Learning

Work in the classification literature has shown that in computing a classification function, one need not know the class membership of all observations in the training set; the unlabeled observations still provide information on the marginal distribution of the feature set, and can thus contribute to increased classification accuracy for future observations. The present paper will show that this scheme can also be used for the estimation of class prior probabilities, which would be very useful in applications in which it is difficult or expensive to determine class membership. Both parametric and nonparametric estimators are developed. Asymptotic distributions of the estimators are derived, and it is proven that the use of the unlabeled observations does reduce asymptotic variance. This methodology is also extended to the estimation of subclass probabilities.

RNA Modeling Using Gibbs Sampling and Stochastic Context Free Grammars

AAAI Conferences

Leslie Grate and Mark Herbster and Richard Hughey and David Haussler Baskin (;enter for Computer Engineering and Computer and Information Sciences University of California Santa Cruz, CA 95064 Keywords: RNA secondary structure, Gibbs sampler, Expectation Maximization, stochastic contextfree grammars, hidden Markov models, tP NA, snRNA, 16S rRNA, linguistic methods Abstract A new method of discovering the common secondary structure of a family of homologous RNA sequences using Gibbs sampling and stochastic context-free grammars is proposed. These parameters describe a statistical model of the family. After the Gibbs sampling has produced a crude statistical model for the family, this model is translated into a stochastic context-free grammar, which is then refined by an Expectation Maximization (EM) procedure produce a more complete model. A prototype implementation of the method is tested on tRNA, pieces of 16S rRNA and on U5 snRNA with good results. I. Saira Mian and Harry Noller Sinsheimer Laboratories University of California Santa Cruz, CA 95064 Introduction Tools for analyzing RNA are becoming increasingly important as in vitro evolution and selection techniques produce greater numbers of synthesized RNA families to supplement those related by phylogeny. Two principal methods have been established for predicting RNA secondary structure base pairings. The second technique employs thermodynamics to compare the free energy changes predicted for formation of possible s,'covdary structure and relies on finding the structure with the lowest free energy (Tinoco Jr., Uhlenbeck, & Levine 1971: Turner, Sugimoto, & Freier 1988; *This work was supported in part by NSF grants C,I)A-9115268 and IR1-9123692, and NIIt gratnt (.;M17129. When several related sequences are available that all share a common secondary structure, combinations of different approaches have been used to obtain improved results (Waterman 1989; Le & Zuker 1991; Han& Kim 1993; Chiu & Kolodziejczak 1991; Sankoff 1985; Winker et al. 1990; Lapedes 1992; Klinger & Brutlag 1993; Gutell et aL 1992). Recent efforts have applied Stochastic Context-Free Grammars (SCFGs) to the problems of statistical modeling, multiple alignment, discrimination and prediction of the secondary structure of RNA families (Sakakibara el al. 1994; 1993; Eddy & Durbin 1994; Searls 1993).

Asymptotic slowing down of the nearest-neighbor classifier

Neural Information Processing Systems

Santosh S. Venkatesh Electrical Engineering University of Pennsylvania Philadelphia, PA 19104 If patterns are drawn from an n-dimensional feature space according to a probability distribution that obeys a weak smoothness criterion, we show that the probability that a random input pattern is misclassified by a nearest-neighbor classifier using M random reference patterns asymptotically satisfies a PM(error) "" Poo(error) M2/n' for sufficiently large values of M. Here, Poo(error) denotes the probability of error in the infinite sample limit, and is at most twice the error of a Bayes classifier. Although the value of the coefficient a depends upon the underlying probability distributions, the exponent of M is largely distribution free.We thus obtain a concise relation between a classifier's ability to generalize from a finite reference sample and the dimensionality of the feature space, as well as an analytic validation of Bellman's well known "curse of dimensionality." 1 INTRODUCTION One of the primary tasks assigned to neural networks is pattern classification.