Graber, Colin, Meshi, Ofer, Schwing, Alexander

Deep structured models are widely used for tasks like semantic segmentation, where explicit correlations between variables provide important prior information which generally helps to reduce the data needs of deep nets. However, current deep structured models are restricted by oftentimes very local neighborhood structure, which cannot be increased for computational complexity reasons, and by the fact that the output configuration, or a representation thereof, cannot be transformed further. Very recent approaches which address those issues include graphical model inference inside deep nets so as to permit subsequent non-linear output space transformations. However, optimization of those formulations is challenging and not well understood. Here, we develop a novel model which generalizes existing approaches, such as structured prediction energy networks, and discuss a formulation which maintains applicability of existing inference techniques.

Belanger, David, McCallum, Andrew

We introduce structured prediction energy networks (SPENs), a flexible framework for structured prediction. A deep architecture is used to define an energy function of candidate labels, and then predictions are produced by using back-propagation to iteratively optimize the energy with respect to the labels. This deep architecture captures dependencies between labels that would lead to intractable graphical models, and performs structure learning by automatically learning discriminative features of the structured output. One natural application of our technique is multi-label classification, which traditionally has required strict prior assumptions about the interactions between labels to ensure tractable learning and prediction. We are able to apply SPENs to multi-label problems with substantially larger label sets than previous applications of structured prediction, while modeling high-order interactions using minimal structural assumptions. Overall, deep learning provides remarkable tools for learning features of the inputs to a prediction problem, and this work extends these techniques to learning features of structured outputs. Our experiments provide impressive performance on a variety of benchmark multi-label classification tasks, demonstrate that our technique can be used to provide interpretable structure learning, and illuminate fundamental trade-offs between feed-forward and iterative structured prediction.

Gygli, Michael, Norouzi, Mohammad, Angelova, Anelia

We approach structured output prediction by optimizing a deep value network (DVN) to precisely estimate the task loss on different output configurations for a given input. Once the model is trained, we perform inference by gradient descent on the continuous relaxations of the output variables to find outputs with promising scores from the value network. When applied to image segmentation, the value network takes an image and a segmentation mask as inputs and predicts a scalar estimating the intersection over union between the input and ground truth masks. For multi-label classification, the DVN's objective is to correctly predict the F1 score for any potential label configuration. The DVN framework achieves the state-of-the-art results on multi-label prediction and image segmentation benchmarks.

Belanger, David, Yang, Bishan, McCallum, Andrew

Structured Prediction Energy Networks (SPENs) are a simple, yet expressive family of structured prediction models (Belanger and McCallum, 2016). An energy function over candidate structured outputs is given by a deep network, and predictions are formed by gradient-based optimization. This paper presents end-to-end learning for SPENs, where the energy function is discriminatively trained by back-propagating through gradient-based prediction. In our experience, the approach is substantially more accurate than the structured SVM method of Belanger and McCallum (2016), as it allows us to use more sophisticated non-convex energies. We provide a collection of techniques for improving the speed, accuracy, and memory requirements of end-to-end SPENs, and demonstrate the power of our method on 7-Scenes image denoising and CoNLL-2005 semantic role labeling tasks. In both, inexact minimization of non-convex SPEN energies is superior to baseline methods that use simplistic energy functions that can be minimized exactly.

Structured prediction energy networks (SPENs; Belanger & McCallum 2016) use neural network architectures to define energy functions that can capture arbitrary dependencies among parts of structured outputs. Prior work used gradient descent for inference, relaxing the structured output to a set of continuous variables and then optimizing the energy with respect to them. We replace this use of gradient descent with a neural network trained to approximate structured argmax inference. This "inference network" outputs continuous values that we treat as the output structure. We develop large-margin training criteria for joint training of the structured energy function and inference network. On multi-label classification we report speed-ups of 10-60x compared to (Belanger et al, 2017) while also improving accuracy. For sequence labeling with simple structured energies, our approach performs comparably to exact inference while being much faster at test time. We then demonstrate improved accuracy by augmenting the energy with a "label language model" that scores entire output label sequences, showing it can improve handling of long-distance dependencies in part-of-speech tagging. Finally, we show how inference networks can replace dynamic programming for test-time inference in conditional random fields, suggestive for their general use for fast inference in structured settings.