Deep Structured Prediction with Nonlinear Output Transformations

arXiv.org Machine Learning

Deep structured models are widely used for tasks like semantic segmentation, where explicit correlations between variables provide important prior information which generally helps to reduce the data needs of deep nets. However, current deep structured models are restricted by oftentimes very local neighborhood structure, which cannot be increased for computational complexity reasons, and by the fact that the output configuration, or a representation thereof, cannot be transformed further. Very recent approaches which address those issues include graphical model inference inside deep nets so as to permit subsequent non-linear output space transformations. However, optimization of those formulations is challenging and not well understood. Here, we develop a novel model which generalizes existing approaches, such as structured prediction energy networks, and discuss a formulation which maintains applicability of existing inference techniques.


Graph Structured Prediction Energy Networks

arXiv.org Machine Learning

For joint inference over multiple variables, a variety of structured prediction techniques have been developed to model correlations among variables and thereby improve predictions. However, many classical approaches suffer from one of two primary drawbacks: they either lack the ability to model high-order correlations among variables while maintaining computationally tractable inference, or they do not allow to explicitly model known correlations. To address this shortcoming, we introduce `Graph Structured Prediction Energy Networks,' for which we develop inference techniques that allow to both model explicit local and implicit higher-order correlations while maintaining tractability of inference. We apply the proposed method to tasks from the natural language processing and computer vision domain and demonstrate its general utility.


Structured Prediction Energy Networks

arXiv.org Machine Learning

We introduce structured prediction energy networks (SPENs), a flexible framework for structured prediction. A deep architecture is used to define an energy function of candidate labels, and then predictions are produced by using back-propagation to iteratively optimize the energy with respect to the labels. This deep architecture captures dependencies between labels that would lead to intractable graphical models, and performs structure learning by automatically learning discriminative features of the structured output. One natural application of our technique is multi-label classification, which traditionally has required strict prior assumptions about the interactions between labels to ensure tractable learning and prediction. We are able to apply SPENs to multi-label problems with substantially larger label sets than previous applications of structured prediction, while modeling high-order interactions using minimal structural assumptions. Overall, deep learning provides remarkable tools for learning features of the inputs to a prediction problem, and this work extends these techniques to learning features of structured outputs. Our experiments provide impressive performance on a variety of benchmark multi-label classification tasks, demonstrate that our technique can be used to provide interpretable structure learning, and illuminate fundamental trade-offs between feed-forward and iterative structured prediction.


Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs

arXiv.org Artificial Intelligence

We approach structured output prediction by optimizing a deep value network (DVN) to precisely estimate the task loss on different output configurations for a given input. Once the model is trained, we perform inference by gradient descent on the continuous relaxations of the output variables to find outputs with promising scores from the value network. When applied to image segmentation, the value network takes an image and a segmentation mask as inputs and predicts a scalar estimating the intersection over union between the input and ground truth masks. For multi-label classification, the DVN's objective is to correctly predict the F1 score for any potential label configuration. The DVN framework achieves the state-of-the-art results on multi-label prediction and image segmentation benchmarks.


End-to-End Learning for Structured Prediction Energy Networks

arXiv.org Machine Learning

Structured Prediction Energy Networks (SPENs) are a simple, yet expressive family of structured prediction models (Belanger and McCallum, 2016). An energy function over candidate structured outputs is given by a deep network, and predictions are formed by gradient-based optimization. This paper presents end-to-end learning for SPENs, where the energy function is discriminatively trained by back-propagating through gradient-based prediction. In our experience, the approach is substantially more accurate than the structured SVM method of Belanger and McCallum (2016), as it allows us to use more sophisticated non-convex energies. We provide a collection of techniques for improving the speed, accuracy, and memory requirements of end-to-end SPENs, and demonstrate the power of our method on 7-Scenes image denoising and CoNLL-2005 semantic role labeling tasks. In both, inexact minimization of non-convex SPEN energies is superior to baseline methods that use simplistic energy functions that can be minimized exactly.