Collaborating Authors

A Survey of Available Corpora for Building Data-Driven Dialogue Systems Artificial Intelligence

During the past decade, several areas of speech and language understanding have witnessed substantial breakthroughs from the use of data-driven models. In the area of dialogue systems, the trend is less obvious, and most practical systems are still built through significant engineering and expert knowledge. Nevertheless, several recent results suggest that data-driven approaches are feasible and quite promising. To facilitate research in this area, we have carried out a wide survey of publicly available datasets suitable for data-driven learning of dialogue systems. We discuss important characteristics of these datasets, how they can be used to learn diverse dialogue strategies, and their other potential uses. We also examine methods for transfer learning between datasets and the use of external knowledge. Finally, we discuss appropriate choice of evaluation metrics for the learning objective.

Learning to Predict from Textual Data

Journal of Artificial Intelligence Research

Given a current news event, we tackle the problem of generating plausible predictions of future events it might cause. We present a new methodology for modeling and predicting such future news events using machine learning and data mining techniques. Our Pundit algorithm generalizes examples of causality pairs to infer a causality predictor. To obtain precisely labeled causality examples, we mine 150 years of news articles and apply semantic natural language modeling techniques to headlines containing certain predefined causality patterns. For generalization, the model uses a vast number of world knowledge ontologies. Empirical evaluation on real news articles shows that our Pundit algorithm performs as well as non-expert humans.

An Introduction to Conditional Random Fields Machine Learning

Often we wish to predict a large number of variables that depend on each other as well as on other observed variables. Structured prediction methods are essentially a combination of classification and graphical modeling, combining the ability of graphical models to compactly model multivariate data with the ability of classification methods to perform prediction using large sets of input features. This tutorial describes conditional random fields, a popular probabilistic method for structured prediction. CRFs have seen wide application in natural language processing, computer vision, and bioinformatics. We describe methods for inference and parameter estimation for CRFs, including practical issues for implementing large scale CRFs. We do not assume previous knowledge of graphical modeling, so this tutorial is intended to be useful to practitioners in a wide variety of fields.

Higher-Order Markov Tag-Topic Models for Tagged Documents and Images Artificial Intelligence

This paper studies the topic modeling problem of tagged documents and images. Higher-order relations among tagged documents and images are major and ubiquitous characteristics, and play positive roles in extracting reliable and interpretable topics. In this paper, we propose the tag-topic models (TTM) to depict such higher-order topic structural dependencies within the Markov random field (MRF) framework. First, we use the novel factor graph representation of latent Dirichlet allocation (LDA)-based topic models from the MRF perspective, and present an efficient loopy belief propagation (BP) algorithm for approximate inference and parameter estimation. Second, we propose the factor hypergraph representation of TTM, and focus on both pairwise and higher-order relation modeling among tagged documents and images. Efficient loopy BP algorithm is developed to learn TTM, which encourages the topic labeling smoothness among tagged documents and images. Extensive experimental results confirm the incorporation of higher-order relations to be effective in enhancing the overall topic modeling performance, when compared with current state-of-the-art topic models, in many text and image mining tasks of broad interests such as word and link prediction, document classification, and tag recommendation.