Goto

Collaborating Authors

Submodular Field Grammars: Representation, Inference, and Application to Image Parsing

Neural Information Processing Systems

Natural scenes contain many layers of part-subpart structure, and distributions over them are thus naturally represented by stochastic image grammars, with one production per decomposition of a part. Unfortunately, in contrast to language grammars, where the number of possible split points for a production $A \rightarrow BC$ is linear in the length of $A$, in an image there are an exponential number of ways to split a region into subregions. This makes parsing intractable and requires image grammars to be severely restricted in practice, for example by allowing only rectangular regions. In this paper, we address this problem by associating with each production a submodular Markov random field whose labels are the subparts and whose labeling segments the current object into these subparts. We call the result a submodular field grammar (SFG). Finding the MAP split of a region into subregions is now tractable, and by exploiting this we develop an efficient approximate algorithm for MAP parsing of images with SFGs. Empirically, we present promising improvements in accuracy when using SFGs for scene understanding, and show exponential improvements in inference time compared to traditional methods, while returning comparable minima.


Submodular Field Grammars: Representation, Inference, and Application to Image Parsing

Neural Information Processing Systems

Natural scenes contain many layers of part-subpart structure, and distributions over them are thus naturally represented by stochastic image grammars, with one production per decomposition of a part. Unfortunately, in contrast to language grammars, where the number of possible split points for a production $A \rightarrow BC$ is linear in the length of $A$, in an image there are an exponential number of ways to split a region into subregions. This makes parsing intractable and requires image grammars to be severely restricted in practice, for example by allowing only rectangular regions. In this paper, we address this problem by associating with each production a submodular Markov random field whose labels are the subparts and whose labeling segments the current object into these subparts. We call the result a submodular field grammar (SFG).


Incremental Monoidal Grammars

arXiv.org Artificial Intelligence

In this work we define formal grammars in terms of free monoidal categories, along with a functor from the category of formal grammars to the category of automata. Generalising from the Booleans to arbitrary semirings, we extend our construction to weighted formal grammars and weighted automata. This allows us to link the categorical viewpoint on natural language to the standard machine learning notion of probabilistic language model.


Discriminative Log-Linear Grammars with Latent Variables

Neural Information Processing Systems

We demonstrate that log-linear grammars with latent variables can be practically trained using discriminative methods. Central to efficient discriminative training is a hierarchical pruning procedure which allows feature expectations to be efficiently approximatedin a gradient-based procedure.