### MESA: Maximum Entropy by Simulated Annealing

Probabilistic reasoning systems combine different probabilistic rules and probabilistic facts to arrive at the desired probability values of consequences. In this paper we describe the MESA-algorithm (Maximum Entropy by Simulated Annealing) that derives a joint distribution of variables or propositions. It takes into account the reliability of probability values and can resolve conflicts between contradictory statements. The joint distribution is represented in terms of marginal distributions and therefore allows to process large inference networks and to determine desired probability values with high precision. The procedure derives a maximum entropy distribution subject to the given constraints. It can be applied to inference networks of arbitrary topology and may be extended into a number of directions.

### Who’s Calling? Demographics of Mobile Phone Use in Rwanda

We describe how new sources of data can be used to better understand the demographic structure of the population of Rwandan mobile phone users. After combining anonymous call data records with follow-up phone interviews, we detect significant differences in phone usage among different social and economic subgroups of the population. However, initial experiments suggest that predicting demographics from call usage, and vice-versa, is quite difficult.

### Related Datasets in Oracle DV Machine Learning models

Depending on the algorithm/model that generates this dataset metrics present in the dataset will vary. Here is a list of metrics based on the model: Linear Regression, CART numeric, Elastic Net Linear: R-Square, R-Square Adjusted, Mean Absolute Error(MAE), Mean Squared Error(MSE), Relative Absolute Error(RAE), Related Squared Error(RSE), Root Mean Squared Error(RMSE) CART(Classification And Regression Trees), Naive Bayes Classification, Neural Network, Support Vector Machine(SVM), Random Forest, Logistic Regression: Now you know what the Related datasets are and how they can be useful for fine tuning your Machine Learning model or for comparing two different models. .

### What's New in MATLAB Data Analytics

Use neighborhood component analysis (NCA) to choose features for machine learning models. Manipulate and analyze data that is too big to fit in memory. Perform support vector machine (SVM) and Naive Bayes classification, create bags of decision trees, and fit lasso regression on out-of-memory data. Manipulate, compare, and store text data efficiently . Develop clients for MATLAB Production Server in any programming language that supports HTTP.

### Probabilistic structure discovery in time series data

Existing methods for structure discovery in time series data construct interpretable, compositional kernels for Gaussian process regression models. While the learned Gaussian process model provides posterior mean and variance estimates, typically the structure is learned via a greedy optimization procedure. This restricts the space of possible solutions and leads to over-confident uncertainty estimates. We introduce a fully Bayesian approach, inferring a full posterior over structures, which more reliably captures the uncertainty of the model.