Bayesian Bias Mitigation for Crowdsourcing

Neural Information Processing Systems

Biased labelers are a systemic problem in crowdsourcing, and a comprehensive toolbox for handling their responses is still being developed. A typical crowdsourcing application can be divided into three steps: data collection, data curation, and learning. At present these steps are often treated separately. We present Bayesian Bias Mitigation for Crowdsourcing (BBMC), a Bayesian model to unify all three. Most data curation methods account for the {\it effects} of labeler bias by modeling all labels as coming from a single latent truth. Our model captures the {\it sources} of bias by describing labelers as influenced by shared random effects. This approach can account for more complex bias patterns that arise in ambiguous or hard labeling tasks and allows us to merge data curation and learning into a single computation. Active learning integrates data collection with learning, but is commonly considered infeasible with Gibbs sampling inference. We propose a general approximation strategy for Markov chains to efficiently quantify the effect of a perturbation on the stationary distribution and specialize this approach to active learning. Experiments show BBMC to outperform many common heuristics.


HodgeRank With Information Maximization for Crowdsourced Pairwise Ranking Aggregation

AAAI Conferences

Recently, crowdsourcing has emerged as an effective paradigm for human-powered large scale problem solving in various domains. However, task requester usually has a limited amount of budget, thus it is desirable to have a policy to wisely allocate the budget to achieve better quality. In this paper, we study the principle of information maximization for active sampling strategies in the framework of HodgeRank, an approach based on Hodge Decomposition of pairwise ranking data with multiple workers. The principle exhibits two scenarios of active sampling: Fisher information maximization that leads to unsupervised sampling based on a sequential maximization of graph algebraic connectivity without considering labels; and Bayesian information maximization that selects samples with the largest information gain from prior to posterior, which gives a supervised sampling involving the labels collected. Experiments show that the proposed methods boost the sampling efficiency as compared to traditional sampling schemes and are thus valuable to practical crowdsourcing experiments.


Bayesian Bias Mitigation for Crowdsourcing

Neural Information Processing Systems

Biased labelers are a systemic problem in crowdsourcing, and a comprehensive toolbox for handling their responses is still being developed. A typical crowdsourcing application can be divided into three steps: data collection, data curation, and learning. At present these steps are often treated separately. We present Bayesian Bias Mitigation for Crowdsourcing (BBMC), a Bayesian model to unify all three. Most data curation methods account for the {\it effects} of labeler bias by modeling all labels as coming from a single latent truth.


Time-Sensitive Bayesian Information Aggregation for Crowdsourcing Systems

Journal of Artificial Intelligence Research

Many aspects of the design of efficient crowdsourcing processes, such as defining workers bonuses, fair prices and time limits of the tasks, involve knowledge of the likely duration of the task at hand. In this work we introduce a new timesensitive Bayesian aggregation method that simultaneously estimates a tasks duration and obtains reliable aggregations of crowdsourced judgments. Our method, called BCCTime, uses latent variables to represent the uncertainty about the workers completion time, the tasks duration and the workers accuracy. To relate the quality of a judgment to the time a worker spends on a task, our model assumes that each task is completed within a latent time window within which all workers with a propensity to genuinely attempt the labelling task (i.e., no spammers) are expected to submit their judgments. In contrast, workers with a lower propensity to valid labelling, such as spammers, bots or lazy labellers, are assumed to perform tasks considerably faster or slower than the time required by normal workers. Specifically, we use efficient message-passing Bayesian inference to learn approximate posterior probabilities of (i) the confusion matrix of each worker, (ii) the propensity to valid labelling of each worker, (iii) the unbiased duration of each task and (iv) the true label of each task. Using two real- world public datasets for entity linking tasks, we show that BCCTime produces up to 11% more accurate classifications and up to 100% more informative estimates of a tasks duration compared to stateoftheart methods.


HodgeRank with Information Maximization for Crowdsourced Pairwise Ranking Aggregation

arXiv.org Machine Learning

Recently, crowdsourcing has emerged as an effective paradigm for human-powered large scale problem solving in various domains. However, task requester usually has a limited amount of budget, thus it is desirable to have a policy to wisely allocate the budget to achieve better quality. In this paper, we study the principle of information maximization for active sampling strategies in the framework of HodgeRank, an approach based on Hodge Decomposition of pairwise ranking data with multiple workers. The principle exhibits two scenarios of active sampling: Fisher information maximization that leads to unsupervised sampling based on a sequential maximization of graph algebraic connectivity without considering labels; and Bayesian information maximization that selects samples with the largest information gain from prior to posterior, which gives a supervised sampling involving the labels collected. Experiments show that the proposed methods boost the sampling efficiency as compared to traditional sampling schemes and are thus valuable to practical crowdsourcing experiments.