Goto

Collaborating Authors



Bayesian Dropout

arXiv.org Machine Learning

Dropout has recently emerged as a powerful and simple method for training neural networks preventing co-adaptation by stochastically omitting neurons. Dropout is currently not grounded in explicit modelling assumptions which so far has precluded its adoption in Bayesian modelling. Using Bayesian entropic reasoning we show that dropout can be interpreted as optimal inference under constraints. We demonstrate this on an analytically tractable regression model providing a Bayesian interpretation of its mechanism for regularizing and preventing co-adaptation as well as its connection to other Bayesian techniques. We also discuss two general approximate techniques for applying Bayesian dropout for general models, one based on an analytical approximation and the other on stochastic variational techniques. These techniques are then applied to a Baysian logistic regression problem and are shown to improve performance as the model become more misspecified. Our framework roots dropout as a theoretically justified and practical tool for statistical modelling allowing Bayesians to tap into the benefits of dropout training.


Overpruning in Variational Bayesian Neural Networks

arXiv.org Machine Learning

The motivations for using variational inference (VI) in neural networks differ significantly from those in latent variable models. This has a counter-intuitive consequence; more expressive variational approximations can provide significantly worse predictions as compared to those with less expressive families. In this work we make two contributions. First, we identify a cause of this performance gap, variational over-pruning. Second, we introduce a theoretically grounded explanation for this phenomenon. Our perspective sheds light on several related published results and provides intuition into the design of effective variational approximations of neural networks.


A Filtering Approach to Stochastic Variational Inference

Neural Information Processing Systems

Stochastic variational inference (SVI) uses stochastic optimization to scale up Bayesian computation to massive data. We present an alternative perspective on SVI as approximate parallel coordinate ascent. SVI trades-off bias and variance to step close to the unknown true coordinate optimum given by batch variational Bayes (VB). We define a model to automate this process. As a consequence of this construction, we update the variational parameters using Bayes rule, rather than a hand-crafted optimization schedule.