Flexible sampling of discrete data correlations without the marginal distributions

Neural Information Processing Systems

Learning the joint dependence of discrete variables is a fundamental problem in machine learning, with many applications including prediction, clustering and dimensionality reduction. More recently, the framework of copula modeling has gained popularity due to its modular parametrization of joint distributions. Among other properties, copulas provide a recipe for combining flexible models for univariate marginal distributions with parametric families suitable for potentially high dimensional dependence structures. More radically, the extended rank likelihood approach of Hoff (2007) bypasses learning marginal models completely when such information is ancillary to the learning task at hand as in, e.g., standard dimensionality reduction problems or copula parameter estimation. The main idea is to represent data by their observable rank statistics, ignoring any other information from the marginals. Inference is typically done in a Bayesian framework with Gaussian copulas, and it is complicated by the fact this implies sampling within a space where the number of constraints increase quadratically with the number of data points. The result is slow mixing when using off-the-shelf Gibbs sampling. We present an efficient algorithm based on recent advances on constrained Hamiltonian Markov chain Monte Carlo that is simple to implement and does not require paying for a quadratic cost in sample size.

bartMachine: Machine Learning with Bayesian Additive Regression Trees

arXiv.org Machine Learning

We present a new package in R implementing Bayesian additive regression trees (BART). The package introduces many new features for data analysis using BART such as variable selection, interaction detection, model diagnostic plots, incorporation of missing data and the ability to save trees for future prediction. It is significantly faster than the current R implementation, parallelized, and capable of handling both large sample sizes and high-dimensional data.

Asymptotically Unambitious Artificial General Intelligence

arXiv.org Artificial Intelligence

General intelligence, the ability to solve arbitrary solvable problems, is supposed by many to be artificially constructible. Narrow intelligence, the ability to solve a given particularly difficult problem, has seen impressive recent development. Notable examples include self-driving cars, Go engines, image classifiers, and translators. Artificial General Intelligence (AGI) presents dangers that narrow intelligence does not: if something smarter than us across every domain were indifferent to our concerns, it would be an existential threat to humanity, just as we threaten many species despite no ill will. Even the theory of how to maintain the alignment of an AGI's goals with our own has proven highly elusive. We present the first algorithm we are aware of for asymptotically unambitious AGI, where "unambitiousness" includes not seeking arbitrary power. Thus, we identify an exception to the Instrumental Convergence Thesis, which is roughly that by default, an AGI would seek power, including over us.

Closed-Loop Policies for Operational Tests of Safety-Critical Systems

arXiv.org Artificial Intelligence

Manufacturers of safety-critical systems must make the case that their product is sufficiently safe for public deployment. Much of this case often relies upon critical event outcomes from real-world testing, requiring manufacturers to be strategic about how they allocate testing resources in order to maximize their chances of demonstrating system safety. This work frames the partially observable and belief-dependent problem of test scheduling as a Markov decision process, which can be solved efficiently to yield closed-loop manufacturer testing policies. By solving for policies over a wide range of problem formulations, we are able to provide high-level guidance for manufacturers and regulators on issues relating to the testing of safety-critical systems. This guidance spans an array of topics, including circumstances under which manufacturers should continue testing despite observed incidents, when manufacturers should test aggressively, and when regulators should increase or reduce the real-world testing requirements for an autonomous vehicle.

A Probabilistic Vehicle Diagnostic System Using Multiple Models

AAAI Conferences

In addition to being accurate, it is important that diagnostic systems for use in automobiles also have low development and hardware costs. Model-based methods have shown promise at reducing hardware costs since they use analytical redundancy to reduce physical redundancy. In addition to requiring no extra sensors, the diagnostic system presented in this paper also allows for high accuracy and low development costs by using information from multiple simple models. This is made possible by the use of a Bayesian network to process model residuals. A hybrid, dynamic Bayesian network is used to model the temporal behavior of the faults and determine fault probabilities. A prototype of the system has been implemented and tested on a Mercedes-Benz E320 sedan. This paper describes the prototype system and presents results demonstrating the system's advantages over traditional residual threshold techniques.