Label Ranking with Abstention: Predicting Partial Orders by Thresholding Probability Distributions (Extended Abstract)

arXiv.org Artificial Intelligence

We consider an extension of the setting of label ranking, in which the learner is allowed to make predictions in the form of partial instead of total orders. Predictions of that kind are interpreted as a partial abstention: If the learner is not sufficiently certain regarding the relative order of two alternatives, it may abstain from this decision and instead declare these alternatives as being incomparable. We propose a new method for learning to predict partial orders that improves on an existing approach, both theoretically and empirically. Our method is based on the idea of thresholding the probabilities of pairwise preferences between labels as induced by a predicted (parameterized) probability distribution on the set of all rankings.


Online Rank Elicitation for Plackett-Luce: A Dueling Bandits Approach

Neural Information Processing Systems

We study the problem of online rank elicitation, assuming that rankings of a set of alternatives obey the Plackett-Luce distribution. Following the setting of the dueling bandits problem, the learner is allowed to query pairwise comparisons between alternatives, i.e., to sample pairwise marginals of the distribution in an online fashion. Using this information, the learner seeks to reliably predict the most probable ranking (or top-alternative). Our approach is based on constructing a surrogate probability distribution over rankings based on a sorting procedure, for which the pairwise marginals provably coincide with the marginals of the Plackett-Luce distribution.


A Margin-based MLE for Crowdsourced Partial Ranking

arXiv.org Machine Learning

A preference order or ranking aggregated from pairwise comparison data is commonly understood as a strict total order. However, in real-world scenarios, some items are intrinsically ambiguous in comparisons, which may very well be an inherent uncertainty of the data. In this case, the conventional total order ranking can not capture such uncertainty with mere global ranking or utility scores. In this paper, we are specifically interested in the recent surge in crowdsourcing applications to predict partial but more accurate (i.e., making less incorrect statements) orders rather than complete ones. To do so, we propose a novel framework to learn some probabilistic models of partial orders as a \emph{margin-based Maximum Likelihood Estimate} (MLE) method. We prove that the induced MLE is a joint convex optimization problem with respect to all the parameters, including the global ranking scores and margin parameter. Moreover, three kinds of generalized linear models are studied, including the basic uniform model, Bradley-Terry model, and Thurstone-Mosteller model, equipped with some theoretical analysis on FDR and Power control for the proposed methods. The validity of these models are supported by experiments with both simulated and real-world datasets, which shows that the proposed models exhibit improvements compared with traditional state-of-the-art algorithms.


Multi-Prototype Label Ranking with Novel Pairwise-to-Total-Rank Aggregation

AAAI Conferences

We propose a multi-prototype-based algorithm for online learning of soft pairwise-preferences over labels. The algorithm learns soft label preferences via minimization of the proposed soft rank-loss measure, and can learn from total orders as well as from various types of partial orders. The soft pairwise preference algorithm outputs are further aggregated to produce a total label ranking prediction using a novel aggregation algorithm that outperforms existing aggregation solutions. Experiments on synthetic and real-world data demonstrate state-of-the-art performance of the proposed model.


Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening

arXiv.org Machine Learning

We consider the problem of statistical inference for ranking data, specifically rank aggregation, under the assumption that samples are incomplete in the sense of not comprising all choice alternatives. In contrast to most existing methods, we explicitly model the process of turning a full ranking into an incomplete one, which we call the coarsening process. To this end, we propose the concept of rank-dependent coarsening, which assumes that incomplete rankings are produced by projecting a full ranking to a random subset of ranks. For a concrete instantiation of our model, in which full rankings are drawn from a Plackett-Luce distribution and observations take the form of pairwise preferences, we study the performance of various rank aggregation methods. In addition to predictive accuracy in the finite sample setting, we address the theoretical question of consistency, by which we mean the ability to recover a target ranking when the sample size goes to infinity, despite a potential bias in the observations caused by the (unknown) coarsening.