Label Ranking with Abstention: Predicting Partial Orders by Thresholding Probability Distributions (Extended Abstract) Artificial Intelligence

We consider an extension of the setting of label ranking, in which the learner is allowed to make predictions in the form of partial instead of total orders. Predictions of that kind are interpreted as a partial abstention: If the learner is not sufficiently certain regarding the relative order of two alternatives, it may abstain from this decision and instead declare these alternatives as being incomparable. We propose a new method for learning to predict partial orders that improves on an existing approach, both theoretically and empirically. Our method is based on the idea of thresholding the probabilities of pairwise preferences between labels as induced by a predicted (parameterized) probability distribution on the set of all rankings.

Label Ranking with Partial Abstention based on Thresholded Probabilistic Models

Neural Information Processing Systems

Several machine learning methods allow for abstaining from uncertain predictions. While being common for settings like conventional classification, abstention has been studied much less in learning to rank. We address abstention for the label ranking setting, allowing the learner to declare certain pairs of labels as being incomparable and, thus, to predict partial instead of total orders. In our method, such predictions are produced via thresholding the probabilities of pairwise preferences between labels, as induced by a predicted probability distribution on the set of all rankings. We formally analyze this approach for the Mallows and the Plackett-Luce model, showing that it produces proper partial orders as predictions and characterizing the expressiveness of the induced class of partial orders.

A Margin-based MLE for Crowdsourced Partial Ranking Machine Learning

A preference order or ranking aggregated from pairwise comparison data is commonly understood as a strict total order. However, in real-world scenarios, some items are intrinsically ambiguous in comparisons, which may very well be an inherent uncertainty of the data. In this case, the conventional total order ranking can not capture such uncertainty with mere global ranking or utility scores. In this paper, we are specifically interested in the recent surge in crowdsourcing applications to predict partial but more accurate (i.e., making less incorrect statements) orders rather than complete ones. To do so, we propose a novel framework to learn some probabilistic models of partial orders as a \emph{margin-based Maximum Likelihood Estimate} (MLE) method. We prove that the induced MLE is a joint convex optimization problem with respect to all the parameters, including the global ranking scores and margin parameter. Moreover, three kinds of generalized linear models are studied, including the basic uniform model, Bradley-Terry model, and Thurstone-Mosteller model, equipped with some theoretical analysis on FDR and Power control for the proposed methods. The validity of these models are supported by experiments with both simulated and real-world datasets, which shows that the proposed models exhibit improvements compared with traditional state-of-the-art algorithms.

Online Rank Elicitation for Plackett-Luce: A Dueling Bandits Approach

Neural Information Processing Systems

We study the problem of online rank elicitation, assuming that rankings of a set of alternatives obey the Plackett-Luce distribution. Following the setting of the dueling bandits problem, the learner is allowed to query pairwise comparisons between alternatives, i.e., to sample pairwise marginals of the distribution in an online fashion. Using this information, the learner seeks to reliably predict the most probable ranking (or top-alternative). Our approach is based on constructing a surrogate probability distribution over rankings based on a sorting procedure, for which the pairwise marginals provably coincide with the marginals of the Plackett-Luce distribution.

Multi-Prototype Label Ranking with Novel Pairwise-to-Total-Rank Aggregation

AAAI Conferences

We propose a multi-prototype-based algorithm for online learning of soft pairwise-preferences over labels. The algorithm learns soft label preferences via minimization of the proposed soft rank-loss measure, and can learn from total orders as well as from various types of partial orders. The soft pairwise preference algorithm outputs are further aggregated to produce a total label ranking prediction using a novel aggregation algorithm that outperforms existing aggregation solutions. Experiments on synthetic and real-world data demonstrate state-of-the-art performance of the proposed model.