An Improvement to the Domain Adaptation Bound in a PAC-Bayesian context

arXiv.org Machine Learning

This paper provides a theoretical analysis of domain adaptation based on the PAC-Bayesian theory. We propose an improvement of the previous domain adaptation bound obtained by Germain et al. in two ways. We first give another generalization bound tighter and easier to interpret. Moreover, we provide a new analysis of the constant term appearing in the bound that can be of high interest for developing new algorithmic solutions.


PAC-Bayesian Theorems for Domain Adaptation with Specialization to Linear Classifiers

arXiv.org Machine Learning

In this paper, we provide two main contributions in PAC-Bayesian theory for domain adaptation where the objective is to learn, from a source distribution, a well-performing majority vote on a different target distribution. On the one hand, we propose an improvement of the previous approach proposed by Germain et al. (2013), that relies on a novel distribution pseudodistance based on a disagreement averaging, allowing us to derive a new tighter PAC-Bayesian domain adaptation bound for the stochastic Gibbs classifier. We specialize it to linear classifiers, and design a learning algorithm which shows interesting results on a synthetic problem and on a popular sentiment annotation task. On the other hand, we generalize these results to multisource domain adaptation allowing us to take into account different source domains. This study opens the door to tackle domain adaptation tasks by making use of all the PAC-Bayesian tools.


Large Scale Bayes Point Machines

Neural Information Processing Systems

The concept of averaging over classifiers is fundamental to the Bayesian analysis of learning. Based on this viewpoint, it has recently beendemonstrated for linear classifiers that the centre of mass of version space (the set of all classifiers consistent with the training set) - also known as the Bayes point - exhibits excellent generalisationabilities. In this paper we present a method based on the simple perceptron learning algorithm which allows to overcome this algorithmic drawback. The method is algorithmically simpleand is easily extended to the multi-class case. We present experimental results on the MNIST data set of handwritten digitswhich show that Bayes point machines (BPMs) are competitive with the current world champion, the support vector machine.


PAC-Bayesian Learning and Domain Adaptation

arXiv.org Machine Learning

In machine learning, Domain Adaptation (DA) arises when the distribution gen- erating the test (target) data differs from the one generating the learning (source) data. It is well known that DA is an hard task even under strong assumptions, among which the covariate-shift where the source and target distributions diverge only in their marginals, i.e. they have the same labeling function. Another popular approach is to consider an hypothesis class that moves closer the two distributions while implying a low-error for both tasks. This is a VC-dim approach that restricts the complexity of an hypothesis class in order to get good generalization. Instead, we propose a PAC-Bayesian approach that seeks for suitable weights to be given to each hypothesis in order to build a majority vote. We prove a new DA bound in the PAC-Bayesian context. This leads us to design the first DA-PAC-Bayesian algorithm based on the minimization of the proposed bound. Doing so, we seek for a \rho-weighted majority vote that takes into account a trade-off between three quantities. The first two quantities being, as usual in the PAC-Bayesian approach, (a) the complexity of the majority vote (measured by a Kullback-Leibler divergence) and (b) its empirical risk (measured by the \rho-average errors on the source sample). The third quantity is (c) the capacity of the majority vote to distinguish some structural difference between the source and target samples.


Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning

arXiv.org Machine Learning

This monograph deals with adaptive supervised classification, using tools borrowed from statistical mechanics and information theory, stemming from the PACBayesian approach pioneered by David McAllester and applied to a conception of statistical learning theory forged by Vladimir Vapnik. Using convex analysis on the set of posterior probability measures, we show how to get local measures of the complexity of the classification model involving the relative entropy of posterior distributions with respect to Gibbs posterior measures. We then discuss relative bounds, comparing the generalization error of two classification rules, showing how the margin assumption of Mammen and Tsybakov can be replaced with some empirical measure of the covariance structure of the classification model.We show how to associate to any posterior distribution an effective temperature relating it to the Gibbs prior distribution with the same level of expected error rate, and how to estimate this effective temperature from data, resulting in an estimator whose expected error rate converges according to the best possible power of the sample size adaptively under any margin and parametric complexity assumptions. We describe and study an alternative selection scheme based on relative bounds between estimators, and present a two step localization technique which can handle the selection of a parametric model from a family of those. We show how to extend systematically all the results obtained in the inductive setting to transductive learning, and use this to improve Vapnik's generalization bounds, extending them to the case when the sample is made of independent non-identically distributed pairs of patterns and labels. Finally we review briefly the construction of Support Vector Machines and show how to derive generalization bounds for them, measuring the complexity either through the number of support vectors or through the value of the transductive or inductive margin.