Goto

Collaborating Authors

An Autoencoder Approach to Learning Bilingual Word Representations

Neural Information Processing Systems

Cross-language learning allows us to use training data from one language to build models for a different language. Many approaches to bilingual learning require that we have word-level alignment of sentences from parallel corpora. In this work we explore the use of autoencoder-based methods for cross-language learning of vectorial word representations that are aligned between two languages, while not relying on word-level alignments. We show that by simply learning to reconstruct the bag-of-words representations of aligned sentences, within and between languages, we can in fact learn high-quality representations and do without word alignments. We empirically investigate the success of our approach on the problem of cross-language text classification, where a classifier trained on a given language (e.g., English) must learn to generalize to a different language (e.g., German).


An Autoencoder Approach to Learning Bilingual Word Representations

arXiv.org Machine Learning

Cross-language learning allows us to use training data from one language to build models for a different language. Many approaches to bilingual learning require that we have word-level alignment of sentences from parallel corpora. In this work we explore the use of autoencoder-based methods for cross-language learning of vectorial word representations that are aligned between two languages, while not relying on word-level alignments. We show that by simply learning to reconstruct the bag-of-words representations of aligned sentences, within and between languages, we can in fact learn high-quality representations and do without word alignments. Since training autoencoders on word observations presents certain computational issues, we propose and compare different variations adapted to this setting. We also propose an explicit correlation maximizing regularizer that leads to significant improvement in the performance. We empirically investigate the success of our approach on the problem of cross-language test classification, where a classifier trained on a given language (e.g., English) must learn to generalize to a different language (e.g., German). These experiments demonstrate that our approaches are competitive with the state-of-the-art, achieving up to 10-14 percentage point improvements over the best reported results on this task.


Unsupervised Multilingual Alignment using Wasserstein Barycenter

arXiv.org Machine Learning

We study unsupervised multilingual alignment, the problem of finding word-to-word translations between multiple languages without using any parallel data. One popular strategy is to reduce multilingual alignment to the much simplified bilingual setting, by picking one of the input languages as the pivot language that we transit through. However, it is well-known that transiting through a poorly chosen pivot language (such as English) may severely degrade the translation quality, since the assumed transitive relations among all pairs of languages may not be enforced in the training process. Instead of going through a rather arbitrarily chosen pivot language, we propose to use the Wasserstein barycenter as a more informative ''mean'' language: it encapsulates information from all languages and minimizes all pairwise transportation costs. We evaluate our method on standard benchmarks and demonstrate state-of-the-art performances.


A survey of cross-lingual embedding models

#artificialintelligence

In past blog posts, we discussed different models, objective functions, and hyperparameter choices that allow us to learn accurate word embeddings. However, these models are generally restricted to capture representations of words in the language they were trained on. The availability of resources, training data, and benchmarks in English leads to a disproportionate focus on the English language and a negligence of the plethora of other languages that are spoken around the world. In our globalised society, where national borders increasingly blur, where the Internet gives everyone equal access to information, it is thus imperative that we do not only seek to eliminate bias pertaining to gender or race inherent in our representations, but also aim to address our bias towards language. To remedy this and level the linguistic playing field, we would like to leverage our existing knowledge in English to equip our models with the capability to process other languages. Perfect machine translation (MT) would allow this. However, we do not need to actually translate examples, as long as we are able to project examples into a common subspace such as the one in Figure 1. Ultimately, our goal is to learn a shared embedding space between words in all languages. Equipped with such a vector space, we are able to train our models on data in any language. By projecting examples available in one language into this space, our model simultaneously obtains the capability to perform predictions in all other languages (we are glossing over some considerations here; for these, refer to this section). This is the promise of cross-lingual embeddings. Over the course of this blog post, I will give an overview of models and algorithms that have been used to come closer to this elusive goal of capturing the relations between words in multiple languages in a common embedding space. Note: While neural MT approaches implicitly learn a shared cross-lingual embedding space by optimizing for the MT objective, we will focus on models that explicitly learn cross-lingual word representations throughout this blog post. These methods generally do so at a much lower cost than MT and can be considered to be to MT what word embedding models (word2vec, GloVe, etc.) are to language modelling.


Massively Multilingual Document Alignment with Cross-lingual Sentence-Mover's Distance

arXiv.org Machine Learning

Cross-lingual document alignment aims to identify pairs of documents in two distinct languages that are of comparable content or translations of each other. Such aligned data can be used for a variety of NLP tasks from training cross-lingual representations to mining parallel bitexts for machine translation training. In this paper we develop an unsupervised scoring function that leverages cross-lingual sentence embeddings to compute the semantic distance between documents in different languages. These semantic distances are then used to guide a document alignment algorithm to properly pair cross-lingual web documents across a variety of low, mid, and high-resource language pairs. Recognizing that our proposed scoring function and other state of the art methods are computationally intractable for long web documents, we utilize a more tractable greedy algorithm that performs comparably. We experimentally demonstrate that our distance metric performs better alignment than current baselines outperforming them by 7% on high-resource language pairs, 15% on mid-resource language pairs, and 22% on low-resource language pairs