Goto

Collaborating Authors

Content preserving text generation with attribute controls

Neural Information Processing Systems

In this work, we address the problem of modifying textual attributes of sentences. Given an input sentence and a set of attribute labels, we attempt to generate sentences that are compatible with the conditioning information. To ensure that the model generates content compatible sentences, we introduce a reconstruction loss which interpolates between auto-encoding and back-translation loss components. We propose an adversarial loss to enforce generated samples to be attribute compatible and realistic. Through quantitative, qualitative and human evaluations we demonstrate that our model is capable of generating fluent sentences that better reflect the conditioning information compared to prior methods. We further demonstrate that the model is capable of simultaneously controlling multiple attributes.


Content preserving text generation with attribute controls

arXiv.org Machine Learning

In this work, we address the problem of modifying textual attributes of sentences. Given an input sentence and a set of attribute labels, we attempt to generate sentences that are compatible with the conditioning information. To ensure that the model generates content compatible sentences, we introduce a reconstruction loss which interpolates between auto-encoding and back-translation loss components. We propose an adversarial loss to enforce generated samples to be attribute compatible and realistic. Through quantitative, qualitative and human evaluations we demonstrate that our model is capable of generating fluent sentences that better reflect the conditioning information compared to prior methods. We further demonstrate that the model is capable of simultaneously controlling multiple attributes.


Adversarial Neural Machine Translation

arXiv.org Machine Learning

In this paper, we study a new learning paradigm for Neural Machine Translation (NMT). Instead of maximizing the likelihood of the human translation as in previous works, we minimize the distinction between human translation and the translation given by an NMT model. To achieve this goal, inspired by the recent success of generative adversarial networks (GANs), we employ an adversarial training architecture and name it as Adversarial-NMT. In Adversarial-NMT, the training of the NMT model is assisted by an adversary, which is an elaborately designed Convolutional Neural Network (CNN). The goal of the adversary is to differentiate the translation result generated by the NMT model from that by human. The goal of the NMT model is to produce high quality translations so as to cheat the adversary. A policy gradient method is leveraged to co-train the NMT model and the adversary. Experimental results on English$\rightarrow$French and German$\rightarrow$English translation tasks show that Adversarial-NMT can achieve significantly better translation quality than several strong baselines.


Toward Unsupervised Text Content Manipulation

arXiv.org Artificial Intelligence

Controlled generation of text is of high practical use. Recent efforts have made impressive progress in generating or editing sentences with given textual attributes (e.g., sentiment). This work studies a new practical setting of text content manipulation. Given a structured record, such as `(PLAYER: Lebron, POINTS: 20, ASSISTS: 10)', and a reference sentence, such as `Kobe easily dropped 30 points', we aim to generate a sentence that accurately describes the full content in the record, with the same writing style (e.g., wording, transitions) of the reference. The problem is unsupervised due to lack of parallel data in practice, and is challenging to minimally yet effectively manipulate the text (by rewriting/adding/deleting text portions) to ensure fidelity to the structured content. We derive a dataset from a basketball game report corpus as our testbed, and develop a neural method with unsupervised competing objectives and explicit content coverage constraints. Automatic and human evaluations show superiority of our approach over competitive methods including a strong rule-based baseline and prior approaches designed for style transfer.


Deep Style Match for Complementary Recommendation

AAAI Conferences

Humans develop a common sense of style compatibility between items based on their attributes. We seek to automatically answer questions like "Does this shirt go well with that pair of jeans?" In order to answer these kinds of questions, we attempt to model human sense of style compatibility in this paper. The basic assumption of our approach is that most of the important attributes for a product in an online store are included in its title description. Therefore it is feasible to learn style compatibility from these descriptions. We design a Siamese Convolutional Neural Network architecture and feed it with title pairs of items, which are either compatible or incompatible. Those pairs will be mapped from the original space of symbolic words into some embedded style space. Our approach takes only words as the input with few preprocessing and there is no laborious and expensive feature engineering.