Goto

Collaborating Authors

Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.



Effective Learning of Probabilistic Models for Clinical Predictions from Longitudinal Data

arXiv.org Machine Learning

Such information includes: the database in modern hospital systems, usually known as Electronic Health Records (EHR), which store the patients' diagnosis, medication, laboratory test results, medical image data, etc.; information on various health behaviors tracked and stored by wearable devices, ubiquitous sensors and mobile applications, such as the smoking status, alcoholism history, exercise level, sleeping conditions, etc.; information collected by census or various surveys regarding sociodemographic factors of the target cohort; and information on people's mental health inferred from their social media activities or social networks such as Twitter, Facebook, etc. These health-related data come from heterogeneous sources, describe assorted aspects of the individual's health conditions. Such data is rich in structure and information which has great research potentials for revealing unknown medical knowledge about genomic epidemiology, disease developments and correlations, drug discoveries, medical diagnosis, mental illness prevention, health behavior adaption, etc. In real-world problems, the number of features relating to a certain health condition could grow exponentially with the development of new information techniques for collecting and measuring data. To reveal the causal influence between various factors and a certain disease or to discover the correlations among diseases from data at such a tremendous scale, requires the assistance of advanced information technology such as data mining, machine learning, text mining, etc. Machine learning technology not only provides a way for learning qualitative relationships among features and patients, but also the quantitative parameters regarding the strength of such correlations.


Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project

Classics

Artificial intelligence, or AI, is largely an experimental science—at least as much progress has been made by building and analyzing programs as by examining theoretical questions. MYCIN is one of several well-known programs that embody some intelligence and provide data on the extent to which intelligent behavior can be programmed. As with other AI programs, its development was slow and not always in a forward direction. But we feel we learned some useful lessons in the course of nearly a decade of work on MYCIN and related programs. In this book we share the results of many experiments performed in that time, and we try to paint a coherent picture of the work. The book is intended to be a critical analysis of several pieces of related research, performed by a large number of scientists. We believe that the whole field of AI will benefit from such attempts to take a detailed retrospective look at experiments, for in this way the scientific foundations of the field will gradually be defined. It is for all these reasons that we have prepared this analysis of the MYCIN experiments.

The complete book in a single file.


Artificial Intelligence Framework for Simulating Clinical Decision-Making: A Markov Decision Process Approach

arXiv.org Artificial Intelligence

In the modern healthcare system, rapidly expanding costs/complexity, the growing myriad of treatment options, and exploding information streams that often do not effectively reach the front lines hinder the ability to choose optimal treatment decisions over time. The goal in this paper is to develop a general purpose (non-disease-specific) computational/artificial intelligence (AI) framework to address these challenges. This serves two potential functions: 1) a simulation environment for exploring various healthcare policies, payment methodologies, etc., and 2) the basis for clinical artificial intelligence - an AI that can think like a doctor. This approach combines Markov decision processes and dynamic decision networks to learn from clinical data and develop complex plans via simulation of alternative sequential decision paths while capturing the sometimes conflicting, sometimes synergistic interactions of various components in the healthcare system. It can operate in partially observable environments (in the case of missing observations or data) by maintaining belief states about patient health status and functions as an online agent that plans and re-plans. This framework was evaluated using real patient data from an electronic health record. Such an AI framework easily outperforms the current treatment-as-usual (TAU) case-rate/fee-for-service models of healthcare (Cost per Unit Change: $189 vs. $497) while obtaining a 30-35% increase in patient outcomes. Tweaking certain model parameters further enhances this advantage, obtaining roughly 50% more improvement for roughly half the costs. Given careful design and problem formulation, an AI simulation framework can approximate optimal decisions even in complex and uncertain environments. Future work is described that outlines potential lines of research and integration of machine learning algorithms for personalized medicine.