Campbell, Trevor, Broderick, Tamara

Coherent uncertainty quantification is a key strength of Bayesian methods. But modern algorithms for approximate Bayesian posterior inference often sacrifice accurate posterior uncertainty estimation in the pursuit of scalability. This work shows that previous Bayesian coreset construction algorithms---which build a small, weighted subset of the data that approximates the full dataset---are no exception. We demonstrate that these algorithms scale the coreset log-likelihood suboptimally, resulting in underestimated posterior uncertainty. To address this shortcoming, we develop greedy iterative geodesic ascent (GIGA), a novel algorithm for Bayesian coreset construction that scales the coreset log-likelihood optimally. GIGA provides geometric decay in posterior approximation error as a function of coreset size, and maintains the fast running time of its predecessors. The paper concludes with validation of GIGA on both synthetic and real datasets, demonstrating that it reduces posterior approximation error by orders of magnitude compared with previous coreset constructions.

Huggins, Jonathan H., Campbell, Trevor, Broderick, Tamara

The use of Bayesian methods in large-scale data settings is attractive because of the rich hierarchical models, uncertainty quantification, and prior specification they provide. Standard Bayesian inference algorithms are computationally expensive, however, making their direct application to large datasets difficult or infeasible. Recent work on scaling Bayesian inference has focused on modifying the underlying algorithms to, for example, use only a random data subsample at each iteration. We leverage the insight that data is often redundant to instead obtain a weighted subset of the data (called a coreset) that is much smaller than the original dataset. We can then use this small coreset in any number of existing posterior inference algorithms without modification. In this paper, we develop an efficient coreset construction algorithm for Bayesian logistic regression models. We provide theoretical guarantees on the size and approximation quality of the coreset -- both for fixed, known datasets, and in expectation for a wide class of data generative models. Crucially, the proposed approach also permits efficient construction of the coreset in both streaming and parallel settings, with minimal additional effort. We demonstrate the efficacy of our approach on a number of synthetic and real-world datasets, and find that, in practice, the size of the coreset is independent of the original dataset size. Furthermore, constructing the coreset takes a negligible amount of time compared to that required to run MCMC on it.

Campbell, Trevor, Beronov, Boyan

The proliferation of automated inference algorithms in Bayesian statistics has provided practitioners newfound access to fast, reproducible data analysis and powerful statistical models. Designing automated methods that are also both computationally scalable and theoretically sound, however, remains a significant challenge. Recent work on Bayesian coresets takes the approach of compressing the dataset before running a standard inference algorithm, providing both scalability and guarantees on posterior approximation error. But the automation of past coreset methods is limited because they depend on the availability of a reasonable coarse posterior approximation, which is difficult to specify in practice. In the present work we remove this requirement by formulating coreset construction as sparsity-constrained variational inference within an exponential family.

Campbell, Trevor, Broderick, Tamara

The automation of posterior inference in Bayesian data analysis has enabled experts and nonexperts alike to use more sophisticated models, engage in faster exploratory modeling and analysis, and ensure experimental reproducibility. However, standard automated posterior inference algorithms are not tractable at the scale of massive modern datasets, and modifications to make them so are typically model-specific, require expert tuning, and can break theoretical guarantees on inferential quality. Building on the Bayesian coresets framework, this work instead takes advantage of data redundancy to shrink the dataset itself as a preprocessing step, providing fully-automated, scalable Bayesian inference with theoretical guarantees. We begin with an intuitive reformulation of Bayesian coreset construction as sparse vector sum approximation, and demonstrate that its automation and performance-based shortcomings arise from the use of the supremum norm. To address these shortcomings we develop Hilbert coresets, i.e., Bayesian coresets constructed under a norm induced by an inner-product on the log-likelihood function space. We propose two Hilbert coreset construction algorithms---one based on importance sampling, and one based on the Frank-Wolfe algorithm---along with theoretical guarantees on approximation quality as a function of coreset size. Since the exact computation of the proposed inner-products is model-specific, we automate the construction with a random finite-dimensional projection of the log-likelihood functions. The resulting automated coreset construction algorithm is simple to implement, and experiments on a variety of models with real and synthetic datasets show that it provides high-quality posterior approximations and a significant reduction in the computational cost of inference.

Lucic, Mario, Faulkner, Matthew, Krause, Andreas, Feldman, Dan

How can we train a statistical mixture model on a massive data set? In this work we show how to construct coresets for mixtures of Gaussians. A coreset is a weighted subset of the data, which guarantees that models fitting the coreset also provide a good fit for the original data set. We show that, perhaps surprisingly, Gaussian mixtures admit coresets of size polynomial in dimension and the number of mixture components, while being independent of the data set size. Hence, one can harness computationally intensive algorithms to compute a good approximation on a significantly smaller data set. More importantly, such coresets can be efficiently constructed both in distributed and streaming settings and do not impose restrictions on the data generating process. Our results rely on a novel reduction of statistical estimation to problems in computational geometry and new combinatorial complexity results for mixtures of Gaussians. Empirical evaluation on several real-world datasets suggests that our coreset-based approach enables significant reduction in training-time with negligible approximation error.