Collaborating Authors

Temporally changing synaptic plasticity

Neural Information Processing Systems

Recent experimental results suggest that dendritic and back-propagating spikes can influence synaptic plasticity in different ways [1]. In this study we investigate how these signals could temporally interact at dendrites leading to changing plasticity properties at local synapse clusters. Similar toa previous study [2], we employ a differential Hebbian plasticity rule to emulate spike-timing dependent plasticity. We use dendritic (D-) and back-propagating (BP-) spikes as post-synaptic signals in the learning ruleand investigate how their interaction will influence plasticity. We will analyze a situation where synapse plasticity characteristics change in the course of time, depending on the type of post-synaptic activity momentarily elicited.Starting with weak synapses, which only elicit local D-spikes, a slow, unspecific growth process is induced. As soon as the soma begins to spike this process is replaced by fast synaptic changes as the consequence of the much stronger and sharper BP-spike, which now dominates the plasticity rule. This way a winner-take-all-mechanism emerges in a two-stage process, enhancing the best-correlated inputs. These results suggest that synaptic plasticity is a temporal changing process bywhich the computational properties of dendrites or complete neurons canbe substantially augmented.

Spike timing-dependent plasticity as dynamic filter

Neural Information Processing Systems

When stimulated with complex action potential sequences synapses exhibit spike timing-dependent plasticity (STDP) with attenuated and enhanced pre- and postsynaptic contributions to long-term synaptic modifications. In order to investigate the functional consequences of these contribution dynamics (CD) we propose a minimal model formulated in terms of differential equations. We find that our model reproduces a wide range of experimental results with a small number of biophysically interpretable parameters. The model allows to investigate the susceptibility of STDP to arbitrary time courses of pre- and postsynaptic activities, i.e. its nonlinear filter properties. We demonstrate this for the simple example of small periodic modulations of pre- and postsynaptic firing rates for which our model can be solved. It predicts synaptic strengthening for synchronous rate modulations. For low baseline rates modifications are dominant in the theta frequency range, a result which underlines the well known relevance of theta activities in hippocampus and cortex for learning. We also find emphasis of low baseline spike rates and suppression for high baseline rates. The latter suggests a mechanism of network activity regulation inherent in STDP. Furthermore, our novel formulation provides a general framework for investigating the joint dynamics of neuronal activity and the CD of STDP in both spike-based as well as rate-based neuronal network models.

Perfect Associative Learning with Spike-Timing-Dependent Plasticity

Neural Information Processing Systems

Recent extensions of the Perceptron, as e.g. the Tempotron, suggest that this theoretical concept is highly relevant also for understanding networks of spiking neurons in the brain. It is not known, however, how the computational power of the Perceptron and of its variants might be accomplished by the plasticity mechanisms of real synapses. Here we prove that spike-timing-dependent plasticity having an anti-Hebbian form for excitatory synapses as well as a spike-timing-dependent plasticity of Hebbian shape for inhibitory synapses are sufficient for realizing the original Perceptron Learning Rule if the respective plasticity mechanisms act in concert with the hyperpolarisation of the post-synaptic neurons. We also show that with these simple yet biologically realistic dynamics Tempotrons are efficiently learned. The proposed mechanism might underly the acquisition of mappings of spatio-temporal activity patterns in one area of the brain onto other spatio-temporal spike patterns in another region and of long term memories in cortex. Our results underline that learning processes in realistic networks of spiking neurons depend crucially on the interactions of synaptic plasticity mechanisms with the dynamics of participating neurons.

Temporally Asymmetric Hebbian Learning, Spike liming and Neural Response Variability

Neural Information Processing Systems

Recent experimental data indicate that the strengthening or weakening of synaptic connections between neurons depends on the relative timing of pre-and postsynaptic action potentials. A Hebbian synaptic modification rule based on these data leads to a stable state in which the excitatory and inhibitory inputs to a neuron are balanced, producing an irregular pattern of firing. It has been proposed that neurons in vivo operate in such a mode.

Selectivity and Metaplasticity in a Unified Calcium-Dependent Model

Neural Information Processing Systems

A unified, biophysically motivated Calcium-Dependent Learning model has been shown to account for various rate-based and spike time-dependent paradigms for inducing synaptic plasticity. Here, we investigate the properties of this model for a multi-synapse neuron that receives inputs with different spike-train statistics. In addition, we present a physiological form of metaplasticity, an activity-driven regulation mechanism, that is essential for the robustness ofthe model.