Goto

Collaborating Authors

A Gaussian Tree Approximation for Integer Least-Squares

Neural Information Processing Systems

This paper proposes a new algorithm for the linear least squares problem where the unknown variables are constrained to be in a finite set. The factor graph that corresponds to this problem is very loopy; in fact, it is a complete graph. The algorithm described here is based on an optimal tree approximation of the Gaussian density of the unconstrained linear system. It is shown that even though the approximation is not directly applied to the exact discrete distribution, applying the BP algorithm to the modified factor graph outperforms current methods in terms of both performance and complexity. The improved performance of the proposed algorithm is demonstrated on the problem of MIMO detection.


Bounding errors of Expectation-Propagation

Neural Information Processing Systems

Expectation Propagation is a very popular algorithm for variational inference, but comes with few theoretical guarantees. In this article, we prove that the approximation errors made by EP can be bounded. Our bounds have an asymptotic interpretation in the number n of datapoints, which allows us to study EP's convergence with respect to the true posterior. In particular, we show that EP converges at a rate of $O(n^{-2})$ for the mean, up to an order of magnitude faster than the traditional Gaussian approximation at the mode. We also give similar asymptotic expansions for moments of order 2 to 4, as well as excess Kullback-Leibler cost (defined as the additional KL cost incurred by using EP rather than the ideal Gaussian approximation). All these expansions highlight the superior convergence properties of EP. Our approach for deriving those results is likely applicable to many similar approximate inference methods. In addition, we introduce bounds on the moments of log-concave distributions that may be of independent interest.


Bounding errors of Expectation-Propagation

Neural Information Processing Systems

Expectation Propagation is a very popular algorithm for variational inference, but comes with few theoretical guarantees. In this article, we prove that the approximation errors made by EP can be bounded. Our bounds have an asymptotic interpretation in the number n of datapoints, which allows us to study EP's convergence with respect to the true posterior. In particular, we show that EP converges at a rate of $O(n {-2})$ for the mean, up to an order of magnitude faster than the traditional Gaussian approximation at the mode. We also give similar asymptotic expansions for moments of order 2 to 4, as well as excess Kullback-Leibler cost (defined as the additional KL cost incurred by using EP rather than the ideal Gaussian approximation).


Variational Bayes Approximations for Clustering via Mixtures of Normal Inverse Gaussian Distributions

arXiv.org Machine Learning

Parameter estimation for model-based clustering using a finite mixture of normal inverse Gaussian (NIG) distributions is achieved through variational Bayes approximations. Univariate NIG mixtures and multivariate NIG mixtures are considered. The use of variational Bayes approximations here is a substantial departure from the traditional EM approach and alleviates some of the associated computational complexities and uncertainties. Our variational algorithm is applied to simulated and real data. The paper concludes with discussion and suggestions for future work.


Expectation Propagation

arXiv.org Machine Learning

Variational inference is a powerful concept that underlies many iterative approximation algorithms; expectation propagation, mean-field methods and belief propagations were all central themes at the school that can be perceived from this unifying framework. The lectures of Manfred Opper introduce the archetypal example of Expectation Propagation, before establishing the connection with the other approximation methods. Corrections by expansion about the expectation propagation are then explained. Finally some advanced inference topics and applications are explored in the final sections.