Developing a NLP based PR platform for the Canadian Elections

#artificialintelligence

Elections are a vital part of democracy allowing people to vote for the candidate they think can best lead the country. A candidate's campaign aims to demonstrate to the public why they think they are the best choice. However, in this age of constant media coverage and digital communications, the candidate is scrutinized at every step. A single misquote or negative news about a candidate can be the difference between him winning or losing the election. It becomes crucial to have a public relations manager who can guide and direct the candidate's campaign by prioritizing specific campaign activities. One critical aspect of the PR manager's work is to understand the public perception of their candidate and improve public sentiment about the candidate.


IBM is funding new Watson AI lab at MIT with $240 Million

#artificialintelligence

IBM said on Thursday it will spend $240 million over the next decade to fund a new artificial intelligence research lab at the Massachusetts Institute of Technology. The resulting MIT–IBM Watson AI Lab will focus on a handful of key AI areas including the development of new "deep learning" algorithms. Deep learning is a subset of AI that aims to bring human-like learning capabilities to computers so they can operate more autonomously. The Cambridge, Mass.-based lab will be led by Dario Gil, vice president of AI for IBM Research and Anantha Chandrakasan, dean of MIT's engineering school. It will draw upon about 100 researchers from IBM (ibm) itself and the university.


Korean IBM Watson to launch in 2017 ZDNet

#artificialintelligence

IBM will launch a Korean version of its AI platform Watson next year in cooperation with local IT service vendor SK C&C, the companies have announced. SK announced Monday that it signed a cooperation agreement with Big Blue on May 4 and will together build an integrated system to market Watson in South Korea. They will develop Korean data analysis solutions based on machine learning and natural language semantic analysis technology for Watson within this year, and will commercialise it sometime in the first half of 2017, SK said. IBM and SK will also build a "Watson Cloud Platform" at the Korean company's datacentre in Pangyo -- the local version of Silicon Valley -- that IT developers and managers can access to make their own applications. For example, an open market business can apply the Watson solution to its product search features to make a personalized contents recommendation solution.


Pars-ABSA: An Aspect-based Sentiment Analysis Dataset in Persian

arXiv.org Machine Learning

Due to the increased availability of online reviews, sentiment analysis had been witnessed a booming interest from the researchers. Sentiment analysis is a computational treatment of sentiment used to extract and understand the opinions of authors. While many systems were built to predict the sentiment of a document or a sentence, many others provide the necessary detail on various aspects of the entity (i.e. aspect-based sentiment analysis). Most of the available data resources were tailored to English and the other popular European languages. Although Persian is a language with more than 110 million speakers, to the best of our knowledge, there is not any public dataset on aspect-based sentiment analysis in Persian. This paper provides a manually annotated Persian dataset, Pars-ABSA, which is verified by 3 native Persian speakers. The dataset consists of 5114 positive, 3061 negative and 1827 neutral data samples from 5602 unique reviews. Moreover, as a baseline, this paper reports the performance of some state-of-the-art aspect-based sentiment analysis methods with a focus on deep learning, on Pars-ABSA. The obtained results are impressive compared to similar English state-of-the-art.


Deeply Moving: Deep Learning for Sentiment Analysis

@machinelearnbot

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank Semantic word spaces have been very useful but cannot express the meaning of longer phrases in a principled way. Further progress towards understanding compositionality in tasks such as sentiment detection requires richer supervised training and evaluation resources and more powerful models of composition. To remedy this, we introduce a Sentiment Treebank. It includes fine grained sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences and presents new challenges for sentiment compositionality. To address them, we introduce the Recursive Neural Tensor Network.