Goto

Collaborating Authors

The Winograd Schema Challenge

AAAI Conferences

In this paper, we present an alternative to the Turing Test that has some conceptual and practical advantages. Like the original, it involves responding to typed English sentences, and English-speaking adults will have no difficulty with it. Unlike the original, the subject is not required to engage in a conversation and fool an interrogator into believing she is dealing with a person. Moreover, the test is arranged in such a way that having full access to a large corpus of English text might not help much. Finally, the interrogator or a third party will be able to decide unambiguously after a few minutes whether or not a subject has passed the test.


Did the Model Understand the Question?

arXiv.org Artificial Intelligence

We analyze state-of-the-art deep learning models for three tasks: question answering on (1) images, (2) tables, and (3) passages of text. Using the notion of \emph{attribution} (word importance), we find that these deep networks often ignore important question terms. Leveraging such behavior, we perturb questions to craft a variety of adversarial examples. Our strongest attacks drop the accuracy of a visual question answering model from $61.1\%$ to $19\%$, and that of a tabular question answering model from $33.5\%$ to $3.3\%$. Additionally, we show how attributions can strengthen attacks proposed by Jia and Liang (2017) on paragraph comprehension models. Our results demonstrate that attributions can augment standard measures of accuracy and empower investigation of model performance. When a model is accurate but for the wrong reasons, attributions can surface erroneous logic in the model that indicates inadequacies in the test data.


The Winograd Schema Challenge

AAAI Conferences

In this paper, we present an alternative to the Turing Test that has some conceptual and practical advantages. A Winograd schema is a pair of sentences that differ only in one or two words and that contain a referential ambiguity that is resolved in opposite directions in the two sentences. We have compiled a collection of Winograd schemas, designed so that the correct answer is obvious to the human reader, but cannot easily be found using selectional restrictions or statistical techniques over text corpora. A contestant in the Winograd Schema Challenge is presented with a collection of one sentence from each pair, and required to achieve human-level accuracy in choosing the correct disambiguation.


Learning a Natural Language Interface with Neural Programmer

arXiv.org Machine Learning

Learning a natural language interface for database tables is a challenging task that involves deep language understanding and multi-step reasoning. The task is often approached by mapping natural language queries to logical forms or programs that provide the desired response when executed on the database. To our knowledge, this paper presents the first weakly supervised, end-to-end neural network model to induce such programs on a real-world dataset. We enhance the objective function of Neural Programmer, a neural network with built-in discrete operations, and apply it on WikiTableQuestions, a natural language question-answering dataset. The model is trained end-to-end with weak supervision of question-answer pairs, and does not require domain-specific grammars, rules, or annotations that are key elements in previous approaches to program induction. The main experimental result in this paper is that a single Neural Programmer model achieves 34.2% accuracy using only 10,000 examples with weak supervision. An ensemble of 15 models, with a trivial combination technique, achieves 37.7% accuracy, which is competitive to the current state-of-the-art accuracy of 37.1% obtained by a traditional natural language semantic parser.


Amazon drones could use Alexa to talk to customers

Daily Mail - Science & tech

Amazon delivery drones could use Alexa to talk to customers - and even shout at them to get out of its way. The firm has been granted a patent for'speech interaction for unmanned aerial vehicles' that would allow drones to answer customer questions, prompt a person to move if in the way of a landing, and warn people passing by if the drone is in'a hazardous state.' A drawing in the patent even depicts a drone with a speech bubble that reads'Please stay away!' as it malfunctions near a person. A scenario in which an Amazon drone would speak to a person to indicate a hazardous condition. 'In some cases, the UAV may be in a potentially hazardous state, such as in a state where one or more propellers are powered and turning,' the patent reads Amazon delivery drones could come with'speech interaction' to talk to customers, according to a new patent.