A Machine Learning Landscape: Where AMD, Intel, NVIDIA, Qualcomm And Xilinx AI Engines Live

Forbes Technology

Without a doubt, 2016 was an amazing year for Machine Learning (ML) and Artificial Intelligence (AI) awareness in the press. But most people probably can't name 3 applications for machine learning, other than self-driving cars and perhaps their voice activated assistant hiding in their phone. There's also a lot of confusion about where the Artificial Intelligence program actually exists. When you ask Siri to play a song or tell you what the weather will be like tomorrow, does "she" live in your phone or in the Apple cloud? And while you ponder those obscure question, many investors and technology recommenders are trying to determine whether,,, or will provide the best underlying hardware chips, for which application and why.

Bayesian Inference of Online Social Network Statistics via Lightweight Random Walk Crawls

arXiv.org Machine Learning

Online social networks (OSN) contain extensive amount of information about the underlying society that is yet to be explored. One of the most feasible technique to fetch information from OSN, crawling through Application Programming Interface (API) requests, poses serious concerns over the the guarantees of the estimates. In this work, we focus on making reliable statistical inference with limited API crawls. Based on regenerative properties of the random walks, we propose an unbiased estimator for the aggregated sum of functions over edges and proved the connection between variance of the estimator and spectral gap. In order to facilitate Bayesian inference on the true value of the estimator, we derive the approximate posterior distribution of the estimate. Later the proposed ideas are validated with numerical experiments on inference problems in real-world networks.

Choose the right AI method for the job


It's hard to remember the days when artificial intelligence seemed like an intangible, futuristic concept. This has been decades in the making, however, and the past 90 years have seen both renaissances and winters for the field of study. At present, AI is launching a persistent infiltration into our personal lives with the rise of self-driving cars and intelligent personal assistants. In the enterprise, we likewise see AI rearing its head in adaptive marketing and cybersecurity. The rise of AI is exciting, but people often throw the term around in an attempt to win buzzword bingo, rather than to accurately reflect technological capabilities.

Nonparametric Bayesian inference of the microcanonical stochastic block model

arXiv.org Machine Learning

A principled approach to characterize the hidden structure of networks is to formulate generative models, and then infer their parameters from data. When the desired structure is composed of modules or "communities", a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard constraints, i.e. the generated networks are not allowed to violate the patterns imposed by the model. We show how this simple model variation allows simultaneously for two important improvements over more traditional inference approaches: 1. Deeper Bayesian hierarchies, with noninformative priors replaced by sequences of priors and hyperpriors, that not only remove limitations that seriously degrade the inference on large networks, but also reveal structures at multiple scales; 2. A very efficient inference algorithm that scales well not only for networks with a large number of nodes and edges, but also with an unlimited number of modules. We show also how this approach can be used to sample modular hierarchies from the posterior distribution, as well as to perform model selection. We discuss and analyze the differences between sampling from the posterior and simply finding the single parameter estimate that maximizes it. Furthermore, we expose a direct equivalence between our microcanonical approach and alternative derivations based on the canonical SBM.

Machine Learning for OpenCV PACKT Books


Machine Learning is no longer just a buzzword, it is all around us: from protecting your email, to automatically tagging friends in pictures, to predicting what movies you like. Computer vision is one of today's most exciting application fields of Machine Learning, with Deep Learning driving innovative systems such as self-driving cars and Google's DeepMind. OpenCV lies at the intersection of these topics, providing a comprehensive open-source library for classic as well as state-of-the-art computer vision and Machine Learning algorithms. In combination with Python Anaconda, you will have access to all the open-source computing libraries you could possibly ask for. Machine Learning for OpenCV begins by introducing you to the essential concepts of statistical learning, such as classification and regression.