Learning Credible Deep Neural Networks with Rationale Regularization

arXiv.org Machine Learning

--Recent explainability related studies have shown that state-of-the-art DNNs do not always adopt correct evidences to make decisions. It not only hampers their generalization but also makes them less likely to be trusted by end-users. In pursuit of developing more credible DNNs, in this paper we propose CREX, which encourages DNN models to focus more on evidences that actually matter for the task at hand, and to avoid overfitting to data-dependent bias and artifacts. Specifically, CREX regularizes the training process of DNNs with rationales, i.e., a subset of features highlighted by domain experts as justifications for predictions, to enforce DNNs to generate local explanations that conform with expert rationales. Even when rationales are not available, CREX still could be useful by requiring the generated explanations to be sparse. Experimental results on two text classification datasets demonstrate the increased credibility of DNNs trained with CREX. Comprehensive analysis further shows that while CREX does not always improve prediction accuracy on the held-out test set, it significantly increases DNN accuracy on new and previously unseen data beyond test set, highlighting the advantage of the increased credibility. I NTRODUCTION There has been an increasing interest recently in developing explainable deep neural networks (DNNs) [1]-[4]. To this end, a DNN model should be able to provide intuitive explanations for its predictions. Explainability could shed light into the decision making process of DNNs and thus increase their acceptance by end-users. However, explainability alone is insufficient for DNNs to be credible [5], unless the provided explanations conform with the well-established domain knowledge. That is to say, correct evidences should be adopted by the networks to make predictions. The incredibility issue has been observed in various DNN systems.

An Interpretable Generative Adversarial Approach to Classification of Latent Entity Relations in Unstructured Sentences

AAAI Conferences

We propose a generative adversarial neural network model for relation classification that attempts to emulate the way in which human analysts might process sentences. Our approach provides two unique benefits over existing capabilities: (1) we make predictions by finding and exploiting supportive rationales to improve interpretability (i.e. words or phrases extracted from a sentence that a person can reason upon), and (2) we allow predictions to be easily corrected by adjusting the rationales.Our model consists of three stages: Generator, Selector, and Encoder. The Generator identifies candidate text fragments; the Selector decides which fragments can be used as rationales depending on the goal; and finally, the Encoder performs relation reasoning on the rationales. While the Encoder is trained in a supervised manner to classify relations, the Generator and Selector are designed as unsupervised models to identify rationales without prior knowledge, although they can be semi-supervised through human annotations. We evaluate our model on data from SemEval 2010 that provides 19 relation-classes. Experiments demonstrate that our approach outperforms state-of-the-art models, and that our model is capable of extracting good rationales on its own as well as benefiting from labeled rationales if provided.

Automated Rationale Generation: A Technique for Explainable AI and its Effects on Human Perceptions

arXiv.org Artificial Intelligence

Automated rationale generation is an approach for real-time explanation generation whereby a computational model learns to translate an autonomous agent's internal state and action data representations into natural language. Training on human explanation data can enable agents to learn to generate human-like explanations for their behavior. In this paper, using the context of an agent that plays Frogger, we describe (a) how to collect a corpus of explanations, (b) how to train a neural rationale generator to produce different styles of rationales, and (c) how people perceive these rationales. We conducted two user studies. The first study establishes the plausibility of each type of generated rationale and situates their user perceptions along the dimensions of confidence, humanlike-ness, adequate justification, and understandability. The second study further explores user preferences between the generated rationales with regard to confidence in the autonomous agent, communicating failure and unexpected behavior. Overall, we find alignment between the intended differences in features of the generated rationales and the perceived differences by users. Moreover, context permitting, participants preferred detailed rationales to form a stable mental model of the agent's behavior.

A Game Theoretic Approach to Class-wise Selective Rationalization

arXiv.org Machine Learning

Selection of input features such as relevant pieces of text has become a common technique of highlighting how complex neural predictors operate. The selection can be optimized post-hoc for trained models or incorporated directly into the method itself (self-explaining). However, an overall selection does not properly capture the multi-faceted nature of useful rationales such as pros and cons for decisions. To this end, we propose a new game theoretic approach to class-dependent rationalization, where the method is specifically trained to highlight evidence supporting alternative conclusions. Each class involves three players set up competitively to find evidence for factual and counterfactual scenarios. We show theoretically in a simplified scenario how the game drives the solution towards meaningful class-dependent rationales. We evaluate the method in single- and multi-aspect sentiment classification tasks and demonstrate that the proposed method is able to identify both factual (justifying the ground truth label) and counterfactual (countering the ground truth label) rationales consistent with human rationalization. The code for our method is publicly available.

Extractive Adversarial Networks: High-Recall Explanations for Identifying Personal Attacks in Social Media Posts

arXiv.org Machine Learning

We introduce an adversarial method for producing high-recall explanations of neural text classifier decisions. Building on an existing architecture for extractive explanations via hard attention, we add an adversarial layer which scans the residual of the attention for remaining predictive signal. Motivated by the important domain of detecting personal attacks in social media comments, we additionally demonstrate the importance of manually setting a semantically appropriate `default' behavior for the model by explicitly manipulating its bias term. We develop a validation set of human-annotated personal attacks to evaluate the impact of these changes.