Goto

Collaborating Authors

Re-conceptualising the Language Game Paradigm in the Framework of Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

In this paper, we formulate the challenge of re-conceptualising the language game experimental paradigm in the framework of multi-agent reinforcement learning (MARL). If successful, future language game experiments will benefit from the rapid and promising methodological advances in the MARL community, while future MARL experiments on learning emergent communication will benefit from the insights and results gained from language game experiments. We strongly believe that this cross-pollination has the potential to lead to major breakthroughs in the modelling of how human-like languages can emerge and evolve in multi-agent systems.


Computational Aspects of Cooperative Game Theory

Morgan & Claypool Publishers

Cooperative game theory is a branch of (micro-)economics that studies the behavior of self-interested agents in strategic settings where binding agreements among agents are possible. Our aim in this book is to present a survey of work on the computational aspects of cooperative game theory. We begin by formally defining transferable utility games in characteristic function form, and introducing key solution concepts such as the core and the Shapley value. We then discuss two major issues that arise when considering such games from a computational perspective: identifying compact representations for games, and the closely related problem of efficiently computing solution concepts for games. We survey several formalisms for cooperative games that have been proposed in the literature, including, for example, cooperative games defined on networks, as well as general compact representation schemes such as MC-nets and skill games.


Finding General Equilibria in Many-Agent Economic Simulations Using Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Real economies can be seen as a sequential imperfect-information game with many heterogeneous, interacting strategic agents of various agent types, such as consumers, firms, and governments. Dynamic general equilibrium models are common economic tools to model the economic activity, interactions, and outcomes in such systems. However, existing analytical and computational methods struggle to find explicit equilibria when all agents are strategic and interact, while joint learning is unstable and challenging. Amongst others, a key reason is that the actions of one economic agent may change the reward function of another agent, e.g., a consumer's expendable income changes when firms change prices or governments change taxes. We show that multi-agent deep reinforcement learning (RL) can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types, in economic simulations with many agents, through the use of structured learning curricula and efficient GPU-only simulation and training. Conceptually, our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing, that are commonly used for analytical tractability. Our GPU implementation enables training and analyzing economies with a large number of agents within reasonable time frames, e.g., training completes within a day. We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes. We validate the learned meta-game epsilon-Nash equilibria through approximate best-response analyses, show that RL policies align with economic intuitions, and that our approach is constructive, e.g., by explicitly learning a spectrum of meta-game epsilon-Nash equilibria in open RBC models.


Emergent Tool Use from Multi-Agent Interaction

#artificialintelligence

In our environment, agents play a team-based hide-and-seek game. Hiders (blue) are tasked with avoiding line-of-sight from the seekers (red), and seekers are tasked with keeping vision of the hiders. There are objects scattered throughout the environment that hiders and seekers can grab and lock in place, as well as randomly generated immovable rooms and walls that agents must learn to navigate. Before the game begins, hiders are given a preparation phase where seekers are immobilized to give hiders a chance to run away or change their environment. There are no explicit incentives for agents to interact with objects in the environment; the only supervision given is through the hide-and-seek objective.


Emergent Reciprocity and Team Formation from Randomized Uncertain Social Preferences

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning (MARL) has shown recent success in increasingly complex fixed-team zero-sum environments. However, the real world is not zero-sum nor does it have fixed teams; humans face numerous social dilemmas and must learn when to cooperate and when to compete. To successfully deploy agents into the human world, it may be important that they be able to understand and help in our conflicts. Unfortunately, selfish MARL agents typically fail when faced with social dilemmas. In this work, we show evidence of emergent direct reciprocity, indirect reciprocity and reputation, and team formation when training agents with randomized uncertain social preferences (RUSP), a novel environment augmentation that expands the distribution of environments agents play in. RUSP is generic and scalable; it can be applied to any multi-agent environment without changing the original underlying game dynamics or objectives. In particular, we show that with RUSP these behaviors can emerge and lead to higher social welfare equilibria in both classic abstract social dilemmas like Iterated Prisoner's Dilemma as well in more complex intertemporal environments.