The two most extended density-based approaches to clustering are surely mixture model clustering and modal clustering. In the mixture model approach, the density is represented as a mixture and clusters are associated to the different mixture components. In modal clustering, clusters are understood as regions of high density separated from each other by zones of lower density, so that they are closely related to certain regions around the density modes. If the true density is indeed in the assumed class of mixture densities, then mixture model clustering allows to scrutinize more subtle situations than modal clustering. However, when mixture modeling is used in a nonparametric way, taking advantage of the denseness of the sieve of mixture densities to approximate any density, then the correspondence between clusters and mixture components may become questionable. In this paper we introduce two methods to adopt a modal clustering point of view after a mixture model fit. Numerous examples are provided to illustrate that mixture modeling can also be used for clustering in a nonparametric sense, as long as clusters are understood as the domains of attraction of the density modes.

Chamroukhi, Faicel, Bartcus, Marius, Glotin, Hervé

The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtures (DPPM) which represent a Bayesian nonparametric formulation of these parsimonious Gaussian mixture models. The proposed DPPM models are Bayesian nonparametric parsimonious mixture models that allow to simultaneously infer the model parameters, the optimal number of mixture components and the optimal parsimonious mixture structure from the data. We develop a Gibbs sampling technique for maximum a posteriori (MAP) estimation of the developed DPMM models and provide a Bayesian model selection framework by using Bayes factors. We apply them to cluster simulated data and real data sets, and compare them to the standard parsimonious mixture models. The obtained results highlight the effectiveness of the proposed nonparametric parsimonious mixture models as a good nonparametric alternative for the parametric parsimonious models.

Viroli, Cinzia, McLachlan, Geoffrey J.

Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, Deep Gaussian Mixture Models are introduced and discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions. Thus, the deep mixture model consists of a set of nested mixtures of linear models, which globally provide a nonlinear model able to describe the data in a very flexible way. In order to avoid overparameterized solutions, dimension reduction by factor models can be applied at each layer of the architecture thus resulting in deep mixtures of factor analysers.

Arvanitidis, Georgios, Hansen, Lars Kai, Hauberg, Søren

The multivariate normal density is a monotonic function of the distance to the mean, and its ellipsoidal shape is due to the underlying Euclidean metric. We suggest to replace this metric with a locally adaptive, smoothly changing (Riemannian) metric that favors regions of high local density. The resulting locally adaptive normal distribution (LAND) is a generalization of the normal distribution to the "manifold" setting, where data is assumed to lie near a potentially low-dimensional manifold embedded in $\mathbb{R}^D$. The LAND is parametric, depending only on a mean and a covariance, and is the maximum entropy distribution under the given metric. The underlying metric is, however, non-parametric. We develop a maximum likelihood algorithm to infer the distribution parameters that relies on a combination of gradient descent and Monte Carlo integration. We further extend the LAND to mixture models, and provide the corresponding EM algorithm. We demonstrate the efficiency of the LAND to fit non-trivial probability distributions over both synthetic data, and EEG measurements of human sleep.

This paper describes bidirectional recurrent mixture density networks, whichcan model multi-modal distributions of the type P(Xt Iyf) and P(Xt lXI, X2, ...,Xt-l, yf) without any explicit assumptions aboutthe use of context. These expressions occur frequently in pattern recognition problems with sequential data, for example in speech recognition. Experiments show that the proposed generativemodels give a higher likelihood on test data compared toa traditional modeling approach, indicating that they can summarize the statistical properties of the data better. 1 Introduction Many problems of engineering interest can be formulated as sequential data problems inan abstract sense as supervised learning from sequential data, where an input vector (dimensionality D) sequence X xf {X!,X2, .. .