Goto

Collaborating Authors

Generalized Beta Mixtures of Gaussians

Neural Information Processing Systems

In recent years, a rich variety of shrinkage priors have been proposed that have great promise in addressing massive regression problems. In general, these new priors can be expressed as scale mixtures of normals, but have more complex forms and better properties than traditional Cauchy and double exponential priors. We first propose a new class of normal scale mixtures through a novel generalized beta distribution that encompasses many interesting priors as special cases. This encompassing framework should prove useful in comparing competing priors, considering properties and revealing close connections. We then develop a class of variational Bayes approximations through the new hierarchy presented that will scale more efficiently to the types of truly massive data sets that are now encountered routinely.


Deep Gaussian Mixture Models

arXiv.org Machine Learning

Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, Deep Gaussian Mixture Models are introduced and discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions. Thus, the deep mixture model consists of a set of nested mixtures of linear models, which globally provide a nonlinear model able to describe the data in a very flexible way. In order to avoid overparameterized solutions, dimension reduction by factor models can be applied at each layer of the architecture thus resulting in deep mixtures of factor analysers.


Mixture model modal clustering

arXiv.org Machine Learning

The two most extended density-based approaches to clustering are surely mixture model clustering and modal clustering. In the mixture model approach, the density is represented as a mixture and clusters are associated to the different mixture components. In modal clustering, clusters are understood as regions of high density separated from each other by zones of lower density, so that they are closely related to certain regions around the density modes. If the true density is indeed in the assumed class of mixture densities, then mixture model clustering allows to scrutinize more subtle situations than modal clustering. However, when mixture modeling is used in a nonparametric way, taking advantage of the denseness of the sieve of mixture densities to approximate any density, then the correspondence between clusters and mixture components may become questionable. In this paper we introduce two methods to adopt a modal clustering point of view after a mixture model fit. Numerous examples are provided to illustrate that mixture modeling can also be used for clustering in a nonparametric sense, as long as clusters are understood as the domains of attraction of the density modes.


Repulsive Mixtures

Neural Information Processing Systems

Discrete mixtures are used routinely in broad sweeping applications ranging from unsupervised settings to fully supervised multi-task learning. Indeed, finite mixtures and infinite mixtures, relying on Dirichlet processes and modifications, have become a standard tool. One important issue that arises in using discrete mixtures is low separation in the components; in particular, different components can be introduced that are very similar and hence redundant. Such redundancy leads to too many clusters that are too similar, degrading performance in unsupervised learning and leading to computational problems and an unnecessarily complex model in supervised settings. Redundancy can arise in the absence of a penalty on components placed close together even when a Bayesian approach is used to learn the number of components.


Dirichlet Process Parsimonious Mixtures for clustering

arXiv.org Machine Learning

The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtures (DPPM) which represent a Bayesian nonparametric formulation of these parsimonious Gaussian mixture models. The proposed DPPM models are Bayesian nonparametric parsimonious mixture models that allow to simultaneously infer the model parameters, the optimal number of mixture components and the optimal parsimonious mixture structure from the data. We develop a Gibbs sampling technique for maximum a posteriori (MAP) estimation of the developed DPMM models and provide a Bayesian model selection framework by using Bayes factors. We apply them to cluster simulated data and real data sets, and compare them to the standard parsimonious mixture models. The obtained results highlight the effectiveness of the proposed nonparametric parsimonious mixture models as a good nonparametric alternative for the parametric parsimonious models.