Farag, Youmna, Yannakoudakis, Helen, Briscoe, Ted

We demonstrate that current state-of-the-art approaches to Automated Essay Scoring (AES) are not well-suited to capturing adversarially crafted input of grammatical but incoherent sequences of sentences. We develop a neural model of local coherence that can effectively learn connectedness features between sentences, and propose a framework for integrating and jointly training the local coherence model with a state-of-the-art AES model. We evaluate our approach against a number of baselines and experimentally demonstrate its effectiveness on both the AES task and the task of flagging adversarial input, further contributing to the development of an approach that strengthens the validity of neural essay scoring models.

Like the course I just released on Hidden Markov Models, Recurrent Neural Networks are all about learning sequences - but whereas Markov Models are limited by the Markov assumption, Recurrent Neural Networks are not - and as a result, they are more expressive, and more powerful than anything we've seen on tasks that we haven't made progress on in decades. So what's going to be in this course and how will it build on the previous neural network courses and Hidden Markov Models? In the first section of the course we are going to add the concept of time to our neural networks. I'll introduce you to the Simple Recurrent Unit, also known as the Elman unit. We are going to revisit the XOR problem, but we're going to extend it so that it becomes the parity problem - you'll see that regular feedforward neural networks will have trouble solving this problem but recurrent networks will work because the key is to treat the input as a sequence.

In this course, you will learn what hyperparameters are, what Genetic Algorithm is, and what hyperparameter optimization is. In this course, you will apply Genetic Algorithm to optimize the performance of Support Vector Machines and Multilayer Perceptron Neural Networks. Hyperparameter optimization will be done on two datasets, a regression dataset for the prediction of cooling and heating loads of buildings, and a classification dataset regarding the classification of emails into spam and non-spam. The SVM and MLP will be applied on the datasets without optimization and compare their results to after their optimization. By the end of this course, you will have learnt how to code Genetic Algorithm in Python and how to optimize your Machine Learning algorithms for maximal performance.