Goto

Collaborating Authors

Deep Neural Network from Scratch in Python

#artificialintelligence

In this video we build on last week Multilayer perceptrons to allow for more flexibility in the architecture! However, we need to be careful about the layer of abstraction we put in place in order to facilitate the work of the user who want to simply fit and predict. Here we make use of the following three concept: Network, Layer and Neuron. These three components will be composed together to make a fully connected feedforward neural network neural network. For those who don't know a fully connected feedforward neural network is defined as follows (From Wikipedia): "A feedforward neural network is an artificial neural network wherein connections between the nodes do not form a cycle. As such, it is different from its descendant: recurrent neural networks. The feedforward neural network was the first and simplest type of artificial neural network devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the network."


Deep Learning: Convolutional Neural Networks in Python

#artificialintelligence

This is the 3rd part in my Data Science and Machine Learning series on Deep Learning in Python. At this point, you already know a lot about neural networks and deep learning, including not just the basics like backpropagation, but how to improve it using modern techniques like momentum and adaptive learning rates. You've already written deep neural networks in Theano and TensorFlow, and you know how to run code using the GPU. This course is all about how to use deep learning for computer vision using convolutional neural networks. These are the state of the art when it comes to image classification and they beat vanilla deep networks at tasks like MNIST.


Building Convolutional Neural Networks with Tensorflow

@machinelearnbot

In the past year I have also worked with Deep Learning techniques, and I would like to share with you how to make and train a Convolutional Neural Network from scratch, using tensorflow. Later on we can use this knowledge as a building block to make interesting Deep Learning applications. The pictures here are from the full article. Source code is also provided. Before you continue, make sure you understand how a convolutional neural network works.


Deep Learning And Neural Networks

#artificialintelligence

If you've been following developments over the last few years, you may have noticed that deep learning and neural networks have grown wildly. Neural network architecture is able to make predictive judgments in in sports, medicine and the financial sector.


What is Deep Learning and Neural Network

@machinelearnbot

Neural Networks and Deep Learning are currently the two hot buzzwords that are being used nowadays with Artificial Intelligence. The recent developments in the World of Artificial intelligence can be attributed to these two as they have played a significant role in improving the intelligence of AI. Look around, and you will find more and more intelligent machines around. Thanks to Neural Networks and Deep Learning, jobs and capabilities that were once considered the forte of humans are now being performed by machines. Today, Machines are no longer made to eat more complex algorithms, but instead, they are fed to develop into an autonomous, self-teaching systems capable of revolutionizing many industries all around.