Goto

Collaborating Authors

How artificial intelligence is shaping online retail in 2017

#artificialintelligence

In just a few years, Artificial intelligence (AI) has successfully maneuvered itself into the daily vernacular of people worldwide. It takes countless shapes and forms, and has altered the way that we view the world and technological possibilities. There's no way of telling just how much development will take place in the next decade. But, one of the places in which AI has been truly impressive has been the world of online retail. We've seen a huge surge of companies using AI to increase their bottom line while providing enriched customer experience.


Deterministic Single-Pass Algorithm for LDA

Neural Information Processing Systems

We develop a deterministic single-pass algorithm for latent Dirichlet allocation (LDA) in order to process received documents one at a time and then discard them in an excess text stream. Our algorithm does not need to store old statistics for all data. The proposed algorithm is much faster than a batch algorithm and is comparable to the batch algorithm in terms of perplexity in experiments. Papers published at the Neural Information Processing Systems Conference.


Algorithms for Generating Ordered Solutions for Explicit AND/OR Structures

Journal of Artificial Intelligence Research

The proposed algorithms use a best first search technique and report the solutions using an implicit representation ordered by cost. In this paper, we present two versions of the search algorithm -- (a) an initial version of the best first search algorithm, ASG, which may present one solution more than once while generating the ordered solutions, and (b) another version, LASG, which avoids the construction of the duplicate solutions. The actual solutions can be reconstructed quickly from the implicit compact representation used. We have applied the methods on a few test domains, some of them are synthetic while the others are based on well known problems including the search space of the 5-peg Tower of Hanoi problem, the matrix-chain multiplication problem and the problem of finding secondary structure of RNA. Experimental results show the efficacy of the proposed algorithms over the existing approach. Our proposed algorithms have potential use in various domains ranging from knowledge based frameworks to service composition, where the AND/OR structure is widely used for representing problems.


The Language of Search

Journal of Artificial Intelligence Research

This paper is concerned with a class of algorithms that perform exhaustive search on propositional knowledge bases. We show that each of these algorithms defines and generates a propositional language. Specifically, we show that the trace of a search can be interpreted as a combinational circuit, and a search algorithm then defines a propositional language consisting of circuits that are generated across all possible executions of the algorithm. In particular, we show that several versions of exhaustive DPLL search correspond to such well-known languages as FBDD, OBDD, and a precisely-defined subset of d-DNNF. By thus mapping search algorithms to propositional languages, we provide a uniform and practical framework in which successful search techniques can be harnessed for compilation of knowledge into various languages of interest, and a new methodology whereby the power and limitations of search algorithms can be understood by looking up the tractability and succinctness of the corresponding propositional languages.


PAC-Bayes bounds for stable algorithms with instance-dependent priors

Neural Information Processing Systems

PAC-Bayes bounds have been proposed to get risk estimates based on a training sample. In this paper the PAC-Bayes approach is combined with stability of the hypothesis learned by a Hilbert space valued algorithm. The PAC-Bayes setting is used with a Gaussian prior centered at the expected output. Thus a novelty of our paper is using priors defined in terms of the data-generating distribution. Our main result estimates the risk of the randomized algorithm in terms of the hypothesis stability coefficients.