Peot, Mark Alan, Shachter, Ross D.

The process of diagnosis involves learning about the state of a system from various observations of symptoms or findings about the system. Sophisticated Bayesian (and other) algorithms have been developed to revise and maintain beliefs about the system as observations are made. Nonetheless, diagnostic models have tended to ignore some common sense reasoning exploited by human diagnosticians; In particular, one can learn from which observations have not been made, in the spirit of conversational implicature. There are two concepts that we describe to extract information from the observations not made. First, some symptoms, if present, are more likely to be reported before others. Second, most human diagnosticians and expert systems are economical in their data-gathering, searching first where they are more likely to find symptoms present. Thus, there is a desirable bias toward reporting symptoms that are present. We develop a simple model for these concepts that can significantly improve diagnostic inference.

Nedić, Angelia, Olshevsky, Alex, Uribe, César A.

We present a distributed (non-Bayesian) learning algorithm for the problem of parameter estimation with Gaussian noise. The algorithm is expressed as explicit updates on the parameters of the Gaussian beliefs (i.e. means and precision). We show a convergence rate of $O(1/k)$ with the constant term depending on the number of agents and the topology of the network. Moreover, we show almost sure convergence to the optimal solution of the estimation problem for the general case of time-varying directed graphs.

Shekhar, Shubhanshu, Javidi, Tara

In this paper, the problem of maximizing a black-box function $f:\mathcal{X} \to \mathbb{R}$ is studied in the Bayesian framework with a Gaussian Process (GP) prior. In particular, a new algorithm for this problem is proposed, and high probability bounds on its simple and cumulative regret are established. The query point selection rule in most existing methods involves an exhaustive search over an increasingly fine sequence of uniform discretizations of $\mathcal{X}$. The proposed algorithm, in contrast, adaptively refines $\mathcal{X}$ which leads to a lower computational complexity, particularly when $\mathcal{X}$ is a subset of a high dimensional Euclidean space. In addition to the computational gains, sufficient conditions are identified under which the regret bounds of the new algorithm improve upon the known results. Finally an extension of the algorithm to the case of contextual bandits is proposed, and high probability bounds on the contextual regret are presented.

Sample size determination for a data set is an important statistical process for analyzing the data to an optimum level of accuracy and using minimum computational work. The applications of this process are credible in every domain which deals with large data sets and high computational work. This study uses Bayesian analysis for determination of minimum sample size of vibration signals to be considered for fault diagnosis of a bearing using pre-defined parameters such as the inverse standard probability and the acceptable margin of error. Thus an analytical formula for sample size determination is introduced. The fault diagnosis of the bearing is done using a machine learning approach using an entropy-based J48 algorithm. The following method will help researchers involved in fault diagnosis to determine minimum sample size of data for analysis for a good statistical stability and precision.

Kemp, Charles, Goodman, Noah, Tenenbaum, Joshua B.

Much of human knowledge is organized into sophisticated systems that are often called intuitive theories. We propose that intuitive theories are mentally represented ina logical language, and that the subjective complexity of a theory is determined by the length of its representation in this language. This complexity measure helps to explain how theories are learned from relational data, and how they support inductive inferences about unobserved relations. We describe two experiments that test our approach, and show that it provides a better account of human learning and reasoning than an approach developed by Goodman [1]. What is a theory, and what makes one theory better than another?