Cluster Analysis and Unsupervised Machine Learning in Python

#artificialintelligence

Cluster analysis is a staple of unsupervised machine learning and data science. It is very useful for data mining and big data because it automatically finds patterns in the data, without the need for labels, unlike supervised machine learning. In a real-world environment, you can imagine that a robot or an artificial intelligence won't always have access to the optimal answer, or maybe there isn't an optimal correct answer. You'd want that robot to be able to explore the world on its own, and learn things just by looking for patterns. Do you ever wonder how we get the data that we use in our supervised machine learning algorithms?


On Education Data Science: Deep Learning in Python - all courses

#artificialintelligence

This course will get you started in building your FIRST artificial neural network using deep learning techniques. Following my previous course on logistic regression, we take this basic building block, and build full-on non-linear neural networks right out of the gate using Python and Numpy. All the materials for this course are FREE. We extend the previous binary classification model to multiple classes using the softmax function, and we derive the very important training method called "backpropagation" using first principles. I show you how to code backpropagation in Numpy, first "the slow way", and then "the fast way" using Numpy features.


On Education Natural Language Processing with Deep Learning in Python - all courses

#artificialintelligence

Understand and implement word2vec Understand the CBOW method in word2vec Understand the skip-gram method in word2vec Understand the negative sampling optimization in word2vec Understand and implement GloVe using gradient descent and alternating least squares Use recurrent neural networks for parts-of-speech tagging Use recurrent neural networks for named entity recognition Understand and implement recursive neural networks for sentiment analysis Understand and implement recursive neural tensor networks for sentiment analysis Install Numpy, Matplotlib, Sci-Kit Learn, Theano, and TensorFlow (should be extremely easy by now) Understand backpropagation and gradient descent, be able to derive and code the equations on your own Code a recurrent neural network from basic primitives in Theano (or Tensorflow), especially the scan function Code a feedforward neural network in Theano (or Tensorflow) Helpful to have experience with tree algorithms In this course we are going to look at advanced NLP. Previously, you learned about some of the basics, like how many NLP problems are just regular machine learning and data science problems in disguise, and simple, practical methods like bag-of-words and term-document matrices. These allowed us to do some pretty cool things, like detect spam emails, write poetry, spin articles, and group together similar words. In this course I'm going to show you how to do even more awesome things. We'll learn not just 1, but 4 new architectures in this course.


On Education Natural Language Processing with Deep Learning in Python - all courses

#artificialintelligence

Understand and implement word2vec Understand the CBOW method in word2vec Understand the skip-gram method in word2vec Understand the negative sampling optimization in word2vec Understand and implement GloVe using gradient descent and alternating least squares Use recurrent neural networks for parts-of-speech tagging Use recurrent neural networks for named entity recognition Understand and implement recursive neural networks for sentiment analysis Understand and implement recursive neural tensor networks for sentiment analysis Install Numpy, Matplotlib, Sci-Kit Learn, Theano, and TensorFlow (should be extremely easy by now) Understand backpropagation and gradient descent, be able to derive and code the equations on your own Code a recurrent neural network from basic primitives in Theano (or Tensorflow), especially the scan function Code a feedforward neural network in Theano (or Tensorflow) Helpful to have experience with tree algorithms In this course we are going to look at advanced NLP. Previously, you learned about some of the basics, like how many NLP problems are just regular machine learning and data science problems in disguise, and simple, practical methods like bag-of-words and term-document matrices. These allowed us to do some pretty cool things, like detect spam emails, write poetry, spin articles, and group together similar words. In this course I'm going to show you how to do even more awesome things. We'll learn not just 1, but 4 new architectures in this course.