Cluster Analysis and Unsupervised Machine Learning in Python

#artificialintelligence

Cluster analysis is a staple of unsupervised machine learning and data science. It is very useful for data mining and big data because it automatically finds patterns in the data, without the need for labels, unlike supervised machine learning. In a real-world environment, you can imagine that a robot or an artificial intelligence won't always have access to the optimal answer, or maybe there isn't an optimal correct answer. You'd want that robot to be able to explore the world on its own, and learn things just by looking for patterns. Do you ever wonder how we get the data that we use in our supervised machine learning algorithms?


Deep Learning: Convolutional Neural Networks in Python

#artificialintelligence

This is the 3rd part in my Data Science and Machine Learning series on Deep Learning in Python. At this point, you already know a lot about neural networks and deep learning, including not just the basics like backpropagation, but how to improve it using modern techniques like momentum and adaptive learning rates. You've already written deep neural networks in Theano and TensorFlow, and you know how to run code using the GPU. This course is all about how to use deep learning for computer vision using convolutional neural networks. These are the state of the art when it comes to image classification and they beat vanilla deep networks at tasks like MNIST.


Deep Learning: Recurrent Neural Networks in Python

@machinelearnbot

Like the course I just released on Hidden Markov Models, Recurrent Neural Networks are all about learning sequences - but whereas Markov Models are limited by the Markov assumption, Recurrent Neural Networks are not - and as a result, they are more expressive, and more powerful than anything we've seen on tasks that we haven't made progress on in decades. So what's going to be in this course and how will it build on the previous neural network courses and Hidden Markov Models? In the first section of the course we are going to add the concept of time to our neural networks. I'll introduce you to the Simple Recurrent Unit, also known as the Elman unit. We are going to revisit the XOR problem, but we're going to extend it so that it becomes the parity problem - you'll see that regular feedforward neural networks will have trouble solving this problem but recurrent networks will work because the key is to treat the input as a sequence.


Data Science: Supervised Machine Learning in Python

@machinelearnbot

In recent years, we've seen a resurgence in AI, or artificial intelligence, and machine learning. Machine learning has led to some amazing results, like being able to analyze medical images and predict diseases on-par with human experts. Google's AlphaGo program was able to beat a world champion in the strategy game go using deep reinforcement learning. Machine learning is even being used to program self driving cars, which is going to change the automotive industry forever. Imagine a world with drastically reduced car accidents, simply by removing the element of human error.