Online Data Science Course : Data Science Certification Course

#artificialintelligence

Data Science has become the new desirable IT job. While there are only few in the market conversant with the terms like python, machine learning, deep learning and transflow, it is also a fact that these skills are high in demand. Acadgild will transform you into a Data Scientist by delivering hands-on experience in Statistics, Machine Learning, Deep Learning and Artificial Intelligence (AI) using Python, TensorFlow, Apache Spark, R and Tableau. The course provides in-depth understanding of Machine Learning and Deep Learning algorithms such as Linear Regression, Logistic Regression, Naive Bayes Classifiers, Decision Tree and Random Forest, Support Vector Machine, Artificial Neural Networks and more. This 24 weeks long Data Science course has several advantages like 400 total coding hours and experienced industry mentors.


A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

Neural Information Processing Systems

Recurrent neural networks (RNNs) stand at the forefront of many recent developments in deep learning. Yet a major difficulty with these models is their tendency to overfit, with dropout shown to fail when applied to recurrent layers. Recent results at the intersection of Bayesian modelling and deep learning offer a Bayesian interpretation of common deep learning techniques such as dropout. This grounding of dropout in approximate Bayesian inference suggests an extension of the theoretical results, offering insights into the use of dropout with RNN models. We apply this new variational inference based dropout technique in LSTM and GRU models, assessing it on language modelling and sentiment analysis tasks. The new approach outperforms existing techniques, and to the best of our knowledge improves on the single model state-of-the-art in language modelling with the Penn Treebank (73.4 test perplexity). This extends our arsenal of variational tools in deep learning.


Towards Representation Learning with Tractable Probabilistic Models

arXiv.org Machine Learning

Probabilistic models learned as density estimators can be exploited in representation learning beside being toolboxes used to answer inference queries only. However, how to extract useful representations highly depends on the particular model involved. We argue that tractable inference, i.e. inference that can be computed in polynomial time, can enable general schemes to extract features from black box models. We plan to investigate how Tractable Probabilistic Models (TPMs) can be exploited to generate embeddings by random query evaluations. We devise two experimental designs to assess and compare different TPMs as feature extractors in an unsupervised representation learning framework. We show some experimental results on standard image datasets by applying such a method to Sum-Product Networks and Mixture of Trees as tractable models generating embeddings.


A Theoretically Grounded Application of Dropout in Recurrent Neural Networks

arXiv.org Machine Learning

Recurrent neural networks (RNNs) stand at the forefront of many recent developments in deep learning. Yet a major difficulty with these models is their tendency to overfit, with dropout shown to fail when applied to recurrent layers. Recent results at the intersection of Bayesian modelling and deep learning offer a Bayesian interpretation of common deep learning techniques such as dropout. This grounding of dropout in approximate Bayesian inference suggests an extension of the theoretical results, offering insights into the use of dropout with RNN models. We apply this new variational inference based dropout technique in LSTM and GRU models, assessing it on language modelling and sentiment analysis tasks. The new approach outperforms existing techniques, and to the best of our knowledge improves on the single model state-of-the-art in language modelling with the Penn Treebank (73.4 test perplexity). This extends our arsenal of variational tools in deep learning.


Neural-Network Quantum States, String-Bond States, and Chiral Topological States

arXiv.org Machine Learning

Neural-Network Quantum States have been recently introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between Neural-Network Quantum States in the form of Restricted Boltzmann Machines and some classes of Tensor-Network states in arbitrary dimensions. In particular we demonstrate that short-range Restricted Boltzmann Machines are Entangled Plaquette States, while fully connected Restricted Boltzmann Machines are String-Bond States with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of Restricted Boltzmann Machines and their efficiency at representing many-body quantum states. String-Bond States also provide a generic way of enhancing the power of Neural-Network Quantum States and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of Tensor Networks and the efficiency of Neural-Network Quantum States into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional Tensor Networks, we show that Neural-Network Quantum States and their String-Bond States extension can describe a lattice Fractional Quantum Hall state exactly. In addition, we provide numerical evidence that Neural-Network Quantum States can approximate a chiral spin liquid with better accuracy than Entangled Plaquette States and local String-Bond States. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of String-Bond States as a tool in more traditional machine-learning applications.