How to Develop a Stacking Ensemble for Deep Learning Neural Networks in Python With Keras

#artificialintelligence

Model averaging is an ensemble technique where multiple sub-models contribute equally to a combined prediction. Model averaging can be improved by weighting the contributions of each sub-model to the combined prediction by the expected performance of the submodel. This can be extended further by training an entirely new model to learn how to best combine the contributions from each submodel. This approach is called stacked generalization, or stacking for short, and can result in better predictive performance than any single contributing model. In this tutorial, you will discover how to develop a stacked generalization ensemble for deep learning neural networks. How to Develop a Stacking Ensemble for Deep Learning Neural Networks in Python With Keras Photo by David Law, some rights reserved. A model averaging ensemble combines the predictions from multiple trained models.


How to Develop a Face Recognition System Using FaceNet in Keras

#artificialintelligence

Face recognition is a computer vision task of identifying and verifying a person based on a photograph of their face. FaceNet is a face recognition system developed in 2015 by researchers at Google that achieved then state-of-the-art results on a range of face recognition benchmark datasets. The FaceNet system can be used broadly thanks to multiple third-party open source implementations of the model and the availability of pre-trained models. The FaceNet system can be used to extract high-quality features from faces, called face embeddings, that can then be used to train a face identification system. In this tutorial, you will discover how to develop a face detection system using FaceNet and an SVM classifier to identify people from photographs. How to Develop a Face Recognition System Using FaceNet in Keras and an SVM Classifier Photo by Peter Valverde, some rights reserved. Face recognition is the general task of identifying and verifying people from photographs of their face.


How to Improve Performance With Transfer Learning for Deep Learning Neural Networks

#artificialintelligence

An interesting benefit of deep learning neural networks is that they can be reused on related problems. Transfer learning refers to a technique for predictive modeling on a different but somehow similar problem that can then be reused partly or wholly to accelerate the training and improve the performance of a model on the problem of interest. In deep learning, this means reusing the weights in one or more layers from a pre-trained network model in a new model and either keeping the weights fixed, fine tuning them, or adapting the weights entirely when training the model. In this tutorial, you will discover how to use transfer learning to improve the performance deep learning neural networks in Python with Keras. How to Improve Performance With Transfer Learning for Deep Learning Neural Networks Photo by Damian Gadal, some rights reserved. Transfer learning generally refers to a process where a model trained on one problem is used in some way on a second related problem.


How to Reduce Variance in the Final Deep Learning Model With a Horizontal Voting Ensemble

#artificialintelligence

Predictive modeling problems where the training dataset is small relative to the number of unlabeled examples are challenging. Neural networks can perform well on these types of problems, although they can suffer from high variance in model performance as measured on a training or hold-out validation datasets. This makes choosing which model to use as the final model risky, as there is no clear signal as to which model is better than another toward the end of the training run. The horizontal voting ensemble is a simple method to address this issue, where a collection of models saved over contiguous training epochs towards the end of a training run are saved and used as an ensemble that results in more stable and better performance on average than randomly choosing a single final model. In this tutorial, you will discover how to reduce the variance of a final deep learning neural network model using a horizontal voting ensemble.