Goto

Collaborating Authors

McGreggor

AAAI Conferences

We present a fractal technique for addressing geometric analogy problems from the Raven's Standard Progressive Matrices test of general intelligence. In this method, an image is represented fractally, capturing its inherent self-similarity. We apply these fractal representations to problems from the Raven's test, and show how these representations afford a new method for solving complex geometric analogy problems.


Structure-mapping engine enables computers to reason and learn like humans, including solving moral dilemmas

#artificialintelligence

Northwestern University's Ken Forbus is closing the gap between humans and machines. Using cognitive science theories, Forbus and his collaborators have developed a model that could give computers the ability to reason more like humans and even make moral decisions. Called the structure-mapping engine (SME), the new model is capable of analogical problem solving, including capturing the way humans spontaneously use analogies between situations to solve moral dilemmas. "In terms of thinking like humans, analogies are where it's at," said Forbus, Walter P. Murphy Professor of Electrical Engineering and Computer Science in Northwestern's McCormick School of Engineering. "Humans use relational statements fluidly to describe things, solve problems, indicate causality, and weigh moral dilemmas."


Making Computers Reason and Learn by Analogy

#artificialintelligence

Northwestern Engineering's Ken Forbus is closing the gap between humans and machines. Using cognitive science theories, Forbus and his collaborators have developed a model that could give computers the ability to reason more like humans and even make moral decisions. Called the structure-mapping engine (SME), the new model is capable of analogical problem solving, including capturing the way humans spontaneously use analogies between situations to solve moral dilemmas. "In terms of thinking like humans, analogies are where it's at," said Forbus, Walter P. Murphy Professor of Electrical Engineering and Computer Science in Northwestern's McCormick School of Engineering. "Humans use relational statements fluidly to describe things, solve problems, indicate causality, and weigh moral dilemmas."


Future of Artificial Intelligence: Making computers reason and think like humans

#artificialintelligence

Northwestern University's Ken Forbus is closing the gap between humans and machines. Using cognitive science theories, Forbus and his collaborators have developed a model that could give computers the ability to reason more like humans and even make moral decisions. Called the structure-mapping engine (SME), the new model is capable of analogical problem solving, including capturing the way humans spontaneously use analogies between situations to solve moral dilemmas. "In terms of thinking like humans, analogies are where it's at," said Forbus, Walter P. Murphy Professor of Electrical Engineering and Computer Science in Northwestern's McCormick School of Engineering. "Humans use relational statements fluidly to describe things, solve problems, indicate causality, and weigh moral dilemmas."


Deep Visual Analogy-Making

Neural Information Processing Systems

In addition to identifying the content within a single image, relating images and generating related images are critical tasks for image understanding. Recently, deep convolutional networks have yielded breakthroughs in producing image labels, annotations and captions, but have only just begun to be used for producing high-quality image outputs. In this paper we develop a novel deep network trained end-to-end to perform visual analogy making, which is the task of transforming a query image according to an example pair of related images. Solving this problem requires both accurately recognizing a visual relationship and generating a transformed query image accordingly. Inspired by recent advances in language modeling, we propose to solve visual analogies by learning to map images to a neural embedding in which analogical reasoning is simple, such as by vector subtraction and addition. In experiments, our model effectively models visual analogies on several datasets: 2D shapes, animated video game sprites, and 3D car models.