Goto

Collaborating Authors

Machine Teaching of Active Sequential Learners

Neural Information Processing Systems

Machine teaching addresses the problem of finding the best training data that can guide a learning algorithm to a target model with minimal effort. In conventional settings, a teacher provides data that are consistent with the true data distribution. However, for sequential learners which actively choose their queries, such as multi-armed bandits and active learners, the teacher can only provide responses to the learner's queries, not design the full data. In this setting, consistent teachers can be sub-optimal for finite horizons. We formulate this sequential teaching problem, which current techniques in machine teaching do not address, as a Markov decision process, with the dynamics nesting a model of the learner and the actions being the teacher's responses.


Dynamic Safe Interruptibility for Decentralized Multi-Agent Reinforcement Learning

Neural Information Processing Systems

In reinforcement learning, agents learn by performing actions and observing their outcomes. Sometimes, it is desirable for a human operator to interrupt an agent in order to prevent dangerous situations from happening. Yet, as part of their learning process, agents may link these interruptions, that impact their reward, to specific states and deliberately avoid them. The situation is particularly challenging in a multi-agent context because agents might not only learn from their own past interruptions, but also from those of other agents. Orseau and Armstrong defined safe interruptibility for one learner, but their work does not naturally extend to multi-agent systems.


Improving Predictions with Ensemble Model

#artificialintelligence

"Alone we can do so little and together we can do much" - a phrase from Helen Keller during 50's is a reflection of achievements and successful stories in real life scenarios from decades. Same thing applies with most of the cases from innovation with big impacts and with advanced technologies world. The machine Learning domain is also in the same race to make predictions and classification in a more accurate way using so called ensemble method and it is proved that ensemble modeling offers one of the most convincing way to build highly accurate predictive models. Ensemble methods are learning models that achieve performance by combining the opinions of multiple learners. Typically, an ensemble model is a supervised learning technique for combining multiple weak learners or models to produce a strong learner with the concept of Bagging and Boosting for data sampling.