Internet of Things and Bayesian Networks

@machinelearnbot

As big data becomes more of cliche with every passing day, do you feel Internet of Things is the next marketing buzzword to grapple our lives. So what exactly is Internet of Thing (IoT) and why are we going to hear more about it in the coming days. Internet of thing (IoT) today denotes advanced connectivity of devices,systems and services that goes beyond machine to machine communications and covers a wide variety of domains and applications specifically in the manufacturing and power, oil and gas utilities. An application in IoT can be an automobile that has built in sensors to alert the driver when the tyre pressure is low. Built-in sensors on equipment's present in the power plant which transmit real time data and thereby enable to better transmission planning,load balancing.


The Many Faces of Exponential Weights in Online Learning

arXiv.org Machine Learning

A standard introduction to online learning might place Online Gradient Descent at its center and then proceed to develop generalizations and extensions like Online Mirror Descent and second-order methods. Here we explore the alternative approach of putting exponential weights (EW) first. We show that many standard methods and their regret bounds then follow as a special case by plugging in suitable surrogate losses and playing the EW posterior mean. For instance, we easily recover Online Gradient Descent by using EW with a Gaussian prior on linearized losses, and, more generally, all instances of Online Mirror Descent based on regular Bregman divergences also correspond to EW with a prior that depends on the mirror map. Furthermore, appropriate quadratic surrogate losses naturally give rise to Online Gradient Descent for strongly convex losses and to Online Newton Step. We further interpret several recent adaptive methods (iProd, Squint, and a variation of Coin Betting for experts) as a series of closely related reductions to exp-concave surrogate losses that are then handled by Exponential Weights. Finally, a benefit of our EW interpretation is that it opens up the possibility of sampling from the EW posterior distribution instead of playing the mean. As already observed by Bubeck and Eldan, this recovers the best-known rate in Online Bandit Linear Optimization.


Text Mining Support in Semantic Annotation and Indexing of Multimedia Data

AAAI Conferences

This short paper is describing a demonstrator that is complementing the paper "Towards Cross-Media Feature Extraction" in these proceedings. The demo is exemplifying the use of textual resources, out of which semantic information can be extracted, for supporting the semantic annotation and indexing of associated video material in the soccer domain. Entities and events extracted from textual data are marked-up with semantic classes derived from an ontology modeling the soccer domain. We show further how extracted Audio-Video features by video analysis can be taken into account for additional annotation of specific soccer event types, and how those different types of annotation can be combined.


Artificial Intelligence: A Free Online Course from MIT

#artificialintelligence

That's because, to paraphrase Amazon's Jeff Bezos, artificial intelligence (AI) is "not just in the first inning of a long baseball game, but at the stage where the very first batter comes up." Look around, and you will find AI everywhere--in self driving cars, Siri on your phone, online customer support, movie recommendations on Netflix, fraud detection for your credit cards, etc. To be sure, there's more to come. Featuring 30 lectures, MIT's course "introduces students to the basic knowledge representation, problem solving, and learning methods of artificial intelligence." It includes interactive demonstrations designed to "help students gain intuition about how artificial intelligence methods work under a variety of circumstances."


Overview of Udacity Artificial Intelligence Engineer Nanodegree, Term 1

#artificialintelligence

After finishing Udacity Deep Learning Foundation I felt that I got a good introduction to Deep Learning, but to understand things, I must dig deeper. Besides I had a guaranteed admission to Self-Driving Car Engineer, Artificial Intelligence, or Robotics Nanodegree programs.