Collaborating Authors

A Practical Guide to Building Ethical AI


Companies are leveraging data and artificial intelligence to create scalable solutions -- but they're also scaling their reputational, regulatory, and legal risks. For instance, Los Angeles is suing IBM for allegedly misappropriating data it collected with its ubiquitous weather app. Optum is being investigated by regulators for creating an algorithm that allegedly recommended that doctors and nurses pay more attention to white patients than to sicker black patients. Goldman Sachs is being investigated by regulators for using an AI algorithm that allegedly discriminated against women by granting larger credit limits to men than women on their Apple cards. Facebook infamously granted Cambridge Analytica, a political firm, access to the personal data of more than 50 million users.

Conquering AI risks


The age of pervasive AI is here.1 Since 2017, Deloitte's annual State of AI in the Enterprise report has measured the rapid advancement of AI technology globally and across industries. In the most recent edition, published in July 2020, a majority of those surveyed reported significant increases in AI investments, with more than three-quarters believing that AI will substantially transform their organization in the next three years. In addition, AI investments are increasingly leading to measurable organizational benefits: improved process efficiency, better decision-making, increased worker productivity, and enhanced products and services.2 These possible benefits have likely driven the growth in AI's perceived value to organizations--nearly three-quarters of respondents report that AI is strategically important, an increase of 10 percentage points from the previous survey.

'Trustworthy AI' is a framework to help manage unique risk


Artificial intelligence (AI) technology continues to advance by leaps and bounds and is quickly becoming a potential disrupter and essential enabler for nearly every company in every industry. At this stage, one of the barriers to widespread AI deployment is no longer the technology itself; rather, it's a set of challenges that ironically are far more human: ethics, governance, and human values. Irfan Saif is principal at Deloitte Risk and Financial Advisory. As AI expands into almost every aspect of modern life, the risks of misbehaving AI increase exponentially--to a point where those risks can literally become a matter of life and death. Real-world examples of AI gone awry include systems that discriminate against people based on their race, age, or gender and social media systems that inadvertently spread rumors and disinformation and more.

State of AI Ethics Report (Volume 6, February 2022) Artificial Intelligence

This report from the Montreal AI Ethics Institute (MAIEI) covers the most salient progress in research and reporting over the second half of 2021 in the field of AI ethics. Particular emphasis is placed on an "Analysis of the AI Ecosystem", "Privacy", "Bias", "Social Media and Problematic Information", "AI Design and Governance", "Laws and Regulations", "Trends", and other areas covered in the "Outside the Boxes" section. The two AI spotlights feature application pieces on "Constructing and Deconstructing Gender with AI-Generated Art" as well as "Will an Artificial Intellichef be Cooking Your Next Meal at a Michelin Star Restaurant?". Given MAIEI's mission to democratize AI, submissions from external collaborators have featured, such as pieces on the "Challenges of AI Development in Vietnam: Funding, Talent and Ethics" and using "Representation and Imagination for Preventing AI Harms". The report is a comprehensive overview of what the key issues in the field of AI ethics were in 2021, what trends are emergent, what gaps exist, and a peek into what to expect from the field of AI ethics in 2022. It is a resource for researchers and practitioners alike in the field to set their research and development agendas to make contributions to the field of AI ethics.

A Framework for Ethical AI at the United Nations Artificial Intelligence

This paper aims to provide an overview of the ethical concerns in artificial intelligence (AI) and the framework that is needed to mitigate those risks, and to suggest a practical path to ensure the development and use of AI at the United Nations (UN) aligns with our ethical values. The overview discusses how AI is an increasingly powerful tool with potential for good, albeit one with a high risk of negative side-effects that go against fundamental human rights and UN values. It explains the need for ethical principles for AI aligned with principles for data governance, as data and AI are tightly interwoven. It explores different ethical frameworks that exist and tools such as assessment lists. It recommends that the UN develop a framework consisting of ethical principles, architectural standards, assessment methods, tools and methodologies, and a policy to govern the implementation and adherence to this framework, accompanied by an education program for staff.