How to Develop a Deep Learning Bag-of-Words Model for Predicting Movie Review Sentiment - Machine Learning Mastery


Movie reviews can be classified as either favorable or not. The evaluation of movie review text is a classification problem often called sentiment analysis. A popular technique for developing sentiment analysis models is to use a bag-of-words model that transforms documents into vectors where each word in the document is assigned a score. In this tutorial, you will discover how you can develop a deep learning predictive model using the bag-of-words representation for movie review sentiment classification. How to Develop a Deep Learning Bag-of-Words Model for Predicting Sentiment in Movie Reviews Photo by jai Mansson, some rights reserved.

Sentiment Classification with Natural Language Processing on LSTM


LSA itself is an unsupervised way of uncovering synonyms in a collection of documents.To start, we take a look how Latent Semantic Analysis is used in Natural Language Processing to analyze relationships between a set of documents and the terms that they contain. Then we go steps further to analyze and classify sentiment. We will review Chi Squared for feature selection along the way. We will use Recurrent Neural Networks, and in particular LSTMs, to perform sentiment analysis in Keras. Since, text is the most unstructured form of all the available data, various types of noise are present in it and the data is not readily analyzable without any pre-processing.

Deep Learning Sentiment Analysis of Reviews and Ratings Machine Learning

Our study employs sentiment analysis to evaluate the compatibility of reviews with their corresponding ratings. Sentiment analysis is the task of identifying and classifying the sentiment expressed in a piece of text as being positive or negative. On e-commerce websites such as, consumers can submit their reviews along with a specific polarity rating. In some instances, there is a mismatch between the review and the rating. To identify the reviews with mismatched ratings we performed sentiment analysis using deep learning on product review data. Product reviews were converted to vectors using paragraph vector, which then was used to train a recurrent neural network with gated recurrent unit. Our model incorporated both semantic relationship of review text and product information. We also developed a web service application that predicts the rating score for a submitted review using the trained model and if there is a mismatch between predicted rating score and submitted rating score, it provides feedback to the reviewer.

Sentiment Analysis with Deep Learning – Towards Data Science


One of the most important elements for businesses is being in touch with its customer base. It is vital for these firms to know exactly what consumers or clients think of new and established products or services, recent initiatives, and customer service offerings. Sentiment analysis is one way to accomplish this necessary task. Sentiment Analysis is a field of Natural Language Processing (NLP) that builds models that try to identify and classify attributes of the expression e.g.: In a world where we generate 2.5 quintillion bytes of data every day, sentiment analysis has become a key tool for making sense of that data. This has allowed companies to get key insights and automate all kind of processes.

Statistical Analysis on E-Commerce Reviews, with Sentiment Classification using Bidirectional Recurrent Neural Network (RNN) Machine Learning

Understanding customer sentiments is of paramount importance in marketing strategies today. Not only will it give companies an insight as to how customers perceive their products and/or services, but it will also give them an idea on how to improve their offers. This paper attempts to understand the correlation of different variables in customer reviews on a women clothing e-commerce, and to classify each review whether it recommends the reviewed product or not and whether it consists of positive, negative, or neutral sentiment. To achieve these goals, we employed univariate and multivariate analyses on dataset features except for review titles and review texts, and we implemented a bidirectional recurrent neural network (RNN) with long-short term memory unit (LSTM) for recommendation and sentiment classification. Results have shown that a recommendation is a strong indicator of a positive sentiment score, and vice-versa. On the other hand, ratings in product reviews are fuzzy indicators of sentiment scores. We also found out that the bidirectional LSTM was able to reach an F1-score of 0.88 for recommendation classification, and 0.93 for sentiment classification.