Goto

Collaborating Authors

Computing Trace Alignment against Declarative Process Models through Planning

AAAI Conferences

Process mining techniques aim at extracting non-trivial knowledge from event traces, which record the concrete execution of business processes. Typically, traces are "dirty" and contain spurious events or miss relevant events. Trace alignment is the problem of cleaning such traces against a process specification. There has recently been a growing use of declarative process models, e.g., Declare (based on LTL over finite traces) to capture constraints on the allowed task flows. We demonstrate here how state-of-the-art classical planning technologies can be used for trace alignment by presenting a suitable encoding. We report experimental results using a real log from a financial domain.


Towards Intelligent Robotic Process Automation for BPMers

arXiv.org Artificial Intelligence

Robotic Process Automation (RPA) is a fast-emerging automation technology that sits between the fields of Business Process Management (BPM) and Artificial Intelligence (AI), and allows organizations to automate high volume routines. RPA tools are able to capture the execution of such routines previously performed by a human users on the interface of a computer system, and then emulate their enactment in place of the user by means of a software robot. Nowadays, in the BPM domain, only simple, predictable business processes involving routine work can be automated by RPA tools in situations where there is no room for interpretation, while more sophisticated work is still left to human experts. In this paper, starting from an in-depth experimentation of the RPA tools available on the market, we provide a classification framework to categorize them on the basis of some key dimensions. Then, based on this analysis, we derive four research challenges and discuss prospective approaches necessary to inject intelligence into current RPA technology, in order to achieve more widespread adoption of RPA in the BPM domain.


Mining Process Model Descriptions of Daily Life through Event Abstraction

arXiv.org Artificial Intelligence

Process mining techniques focus on extracting insight in processes from event logs. Process mining has the potential to provide valuable insights in (un)healthy habits and to contribute to ambient assisted living solutions when applied on data from smart home environments. However, events recorded in smart home environments are on the level of sensor triggers, at which process discovery algorithms produce overgeneralizing process models that allow for too much behavior and that are difficult to interpret for human experts. We show that abstracting the events to a higher-level interpretation can enable discovery of more precise and more comprehensible models. We present a framework for the extraction of features that can be used for abstraction with supervised learning methods that is based on the XES IEEE standard for event logs. This framework can automatically abstract sensor-level events to their interpretation at the human activity level, after training it on training data for which both the sensor and human activity events are known. We demonstrate our abstraction framework on three real-life smart home event logs and show that the process models that can be discovered after abstraction are more precise indeed.


Conformance Checking Approximation using Subset Selection and Edit Distance

arXiv.org Artificial Intelligence

Conformance checking techniques let us find out to what degree a process model and real execution data correspond to each other. In recent years, alignments have proven extremely useful in calculating conformance statistics. Most techniques to compute alignments provide an exact solution. However, in many applications, it is enough to have an approximation of the conformance value. Specifically, for large event data, the computing time for alignments is considerably long using current techniques which makes them inapplicable in reality. Also, it is no longer feasible to use standard hardware for complex processes. Hence, we need techniques that enable us to obtain fast, and at the same time, accurate approximation of the conformance values. This paper proposes new approximation techniques to compute approximated conformance checking values close to exact solution values in a faster time. Those methods also provide upper and lower bounds for the approximated alignment value. Our experiments on real event data show that it is possible to improve the performance of conformance checking by using the proposed methods compared to using the state-of-the-art alignment approximation technique. Results show that in most of the cases, we provide tight bounds, accurate approximated alignment values, and similar deviation statistics.


Mining of Agile Business Processes

AAAI Conferences

Organizational agility is a key challenge in today's business world. The Knowledge-Intensive Service Support approach tackles agility by combining process modeling and business rules. In the paper at hand, we present five approaches of process mining that could further increase the agility of processes by improving an existing process model.