Goto

Collaborating Authors

AI claims to be able to thwart facial recognition software, making you "invisible"

#artificialintelligence

A team of engineering researchers from the University of Toronto has created an algorithm to dynamically disrupt facial recognition systems. Led by professor Parham Aarabi and graduate student Avishek Bose, the team used a deep learning technique called "adversarial training", which pits two artificial intelligence algorithms against each other. Aarabi and Bose designed a set of two neural networks, the first one identifies faces and the other works on disrupting the facial recognition task of the first. The two constantly battle and learn from each other, setting up an ongoing AI arms race. "The disruptive AI can'attack' what the neural net for the face detection is looking for," Bose said in an interview.


These glasses trick facial recognition software into thinking you're someone else

#artificialintelligence

Facial recognition software has become increasingly common in recent years. Facebook uses it to tag your photos; the FBI has a massive facial recognition database spanning hundreds of millions of images; and in New York, there are even plans to add smart, facial recognition surveillance cameras to every bridge and tunnel. But while these systems seem inescapable, the technology that underpins them is far from infallible. In fact, it can be beat with a pair of psychedelic-looking glasses that cost just $0.22. Researchers from Carnegie Mellon University have shown that specially designed spectacle frames can fool even state-of-the-art facial recognition software.


Microsoft says its facial recognition technology is less biased

Mashable

Microsoft claims its facial recognition technology just got a little less awful. Earlier this year, a study by MIT researchers found that tools from IBM, Microsoft, and Chinese company Megvii could correctly identify light-skinned men with 99-percent accuracy. But it incorrectly identified darker-skinned women as often as one-third of the time. Now imagine a computer incorrectly flagging an image at an airport or in a police database, and you can see how dangerous those errors could be. Microsoft's software performed poorly in the study.


Image Recognition: A peek into the future

#artificialintelligence

Our brains are wired in a way that they can differentiate between objects, both living and non-living by simply looking at them. In fact, the recognition of objects and a situation through visualization is the fastest way to gather, as well as to relate information. This becomes a pretty big deal for computers where a vast amount of data has to be stuffed into it, before the computer can perform an operation on its own. Ironically, with each passing day, it is becoming essential for machines to identify objects through facial recognition, so that humans can take the next big step towards a more scientifically advanced social mechanism. So, what progress have we really made in that respect?


The future of facial recognition MV Pro Media

#artificialintelligence

Facial recognition technology is becoming increasingly prevalent in our everyday lives, with many of us using the technology every time we use our face to unlock our smartphone – a study found that we use our phones around 52 times per day. Whilst it has transformed how we access our phones, facial recognition technology is also being used in a number of industries outside of tech to improve the service that companies provide customers with. If you're a company that isn't adopting the use of facial recognition, it's time to start researching into it before you get left behind. Devices recognise their users by scanning facial features and shapes – specific contours and individual unique features help the likes of smartphones recognise users and open certain settings up on phones. For example, many banking apps now allow users to login to their internet banking through the use of their face – this, in some ways, is far safer than the previous ways of using online banking which would either include an individual code or a series of questions to answer that only the user would know.