Goto

Collaborating Authors

Doubting The AI Mystics: Dramatic Predictions About AI Obscure Its Concrete Benefits

#artificialintelligence

Artificial intelligence is advancing rapidly. In a few decades machines will achieve superintelligence and become self-improving. Soon after that happens we will launch a thousand ships into space. These probes will land on distant planets, moons, asteroids, and comets. Each probe will, in fact, contain the information needed to create an entire ecosystem. Thanks to AI and advanced biotechnology, the species in each place will be tailored to their particular plot of rock.


Doubting The AI Mystics: Dramatic Predictions About AI Obscure Its Concrete Benefits

#artificialintelligence

Artificial intelligence is advancing rapidly. In a few decades machines will achieve superintelligence and become self-improving. Soon after that happens we will launch a thousand ships into space. These probes will land on distant planets, moons, asteroids, and comets. Each probe will, in fact, contain the information needed to create an entire ecosystem. Thanks to AI and advanced biotechnology, the species in each place will be tailored to their particular plot of rock.


Minds and machines: The art of forecasting in the age of artificial intelligence

#artificialintelligence

Two of today's major business and intellectual trends offer complementary insights about the challenge of making forecasts in a complex and rapidly changing world. Forty years of behavioral science research into the psychology of probabilistic reasoning have revealed the surprising extent to which people routinely base judgments and forecasts on systematically biased mental heuristics rather than careful assessments of evidence. These findings have fundamental implications for decision making, ranging from the quotidian (scouting baseball players and underwriting insurance contracts) to the strategic (estimating the time, expense, and likely success of a project or business initiative) to the existential (estimating security and terrorism risks). The bottom line: Unaided judgment is an unreliable guide to action. Consider psychologist Philip Tetlock's celebrated multiyear study concluding that even top journalists, historians, and political experts do little better than random chance at forecasting such political events as revolutions and regime changes.1 The second trend is the increasing ubiquity of data-driven decision making and artificial intelligence applications. Once again, an important lesson comes from behavioral science: A body of research dating back to the 1950s has established that even simple predictive models outperform human experts' ability to make predictions and forecasts. This implies that judiciously constructed predictive models can augment human intelligence by helping humans avoid common cognitive traps.


The art of forecasting in the age of artificial intelligence

#artificialintelligence

Two of today's major business and intellectual trends offer complementary insights about the challenge of making forecasts in a complex and rapidly changing world. Forty years of behavioral science research into the psychology of probabilistic reasoning have revealed the surprising extent to which people routinely base judgments and forecasts on systematically biased mental heuristics rather than careful assessments of evidence. These findings have fundamental implications for decision making, ranging from the quotidian (scouting baseball players and underwriting insurance contracts) to the strategic (estimating the time, expense, and likely success of a project or business initiative) to the existential (estimating security and terrorism risks). The bottom line: Unaided judgment is an unreliable guide to action. Consider psychologist Philip Tetlock's celebrated multiyear study concluding that even top journalists, historians, and political experts do little better than random chance at forecasting such political events as revolutions and regime changes.1 The second trend is the increasing ubiquity of data-driven decision making and artificial intelligence applications. Once again, an important lesson comes from behavioral science: A body of research dating back to the 1950s has established that even simple predictive models outperform human experts' ability to make predictions and forecasts. This implies that judiciously constructed predictive models can augment human intelligence by helping humans avoid common cognitive traps.


Forecasting AI Progress: A Research Agenda

arXiv.org Artificial Intelligence

Forecasting AI progress is essential to reducing uncertainty in order to appropriately plan for research efforts on AI safety and AI governance. While this is generally considered to be an important topic, little work has been conducted on it and there is no published document that gives and objective overview of the field. Moreover, the field is very diverse and there is no published consensus regarding its direction. This paper describes the development of a research agenda for forecasting AI progress which utilized the Delphi technique to elicit and aggregate experts' opinions on what questions and methods to prioritize. The results of the Delphi are presented; the remainder of the paper follow the structure of these results, briefly reviewing relevant literature and suggesting future work for each topic. Experts indicated that a wide variety of methods should be considered for forecasting AI progress. Moreover, experts identified salient questions that were both general and completely unique to the problem of forecasting AI progress. Some of the highest priority topics include the validation of (partially unresolved) forecasts, how to make forecasting action-guiding and the quality of different performance metrics. While statistical methods seem more promising, there is also recognition that supplementing judgmental techniques can be quite beneficial.