Goto

Collaborating Authors

Neuromophic Computing

#artificialintelligence

I saw a video article on Neuromorphic Computing the other day - something I had not really heard much about, though it ties in heavily to Artificial Intelligence which I, of course, do know about. Wow.. the possibilities are now endless. This is what Techopedia says about Neuromorphic Computing... Neuromorphic computing utilizes an engineering approach or method based on the activity of the biological brain. This type of approach can make technologies more versatile and adaptable, and promote more vibrant results than other types of traditional architectures, for instance, the von Neumann architecture that is so useful in traditional hardware design. Neuromorphic computing is also known as neuromorphic engineering.


Intel Scales Neuromorphic Research System to 100 Million Neurons Intel Newsroom

#artificialintelligence

What's New: Today, Intel announced the readiness of Pohoiki Springs, its latest and most powerful neuromorphic research system providing the computational capacity of 100 million neurons. The cloud-based system will be made available to members of the Intel Neuromorphic Research Community (INRC), extending their neuromorphic work to solve larger, more complex problems. The system enables our research partners to explore ways to accelerate workloads that run slowly today on conventional architectures, including high-performance computing (HPC) systems." What It is: Pohoiki Springs is a data center rack-mounted system and is Intel's largest neuromorphic computing system developed to date. Loihi processors take inspiration from the human brain.


Neuromorphic Computing Market Technology and Rising Demand For Artificial Intelligence

#artificialintelligence

Neuromorphic computing or neuromorphic engineering has been described as the use of large integration systems containing numerous analog circuits allowing the replication of neuro-biological behaviors existing in a human's nervous system. The neuromorphic computing market platform consists of two vital systems based on the custom hardware architecture. Such systems are designed to program neural microcircuits by applying brain-like thought process in cognitive computing and machine learning process. This procedure enables a machine to learn, adapt and function like a human brain does rather than functioning like a normal computer. In addition, to perform such a complex task, the computing platform requires the state-of-the-art circuit technologies and electronic components, which allows the platform to receive new data or knowledge gained from various other sources of neuroscience research, e.g.


What is neuromorphic computing? Everything you need to know about how it is changing the future of computing

ZDNet

As the name suggests, neuromorphic computing uses a model that's inspired by the workings of the brain. The brain makes a really appealing model for computing: unlike most supercomputers, which fill rooms, the brain is compact, fitting neatly in something the size of, well... your head. Brains also need far less energy than most supercomputers: your brain uses about 20 watts, whereas the Fugaku supercomputer needs 28 megawatts -- or to put it another way, a brain needs about 0.00007% of Fugaku's power supply. While supercomputers need elaborate cooling systems, the brain sits in a bony housing that keeps it neatly at 37 C. True, supercomputers make specific calculations at great speed, but the brain wins on adaptability. It can write poetry, pick a familiar face out of a crowd in a flash, drive a car, learn a new language, take good decisions and bad, and so much more.


Neuromorphic engineering - Wikipedia

#artificialintelligence

Neuromorphic engineering, also known as neuromorphic computing,[1][2][3] is a concept developed by Carver Mead,[4] in the late 1980s, describing the use of very-large-scale integration (VLSI) systems containing electronic analog circuits to mimic neuro-biological architectures present in the nervous system.[5] In recent times, the term neuromorphic has been used to describe analog, digital, mixed-mode analog/digital VLSI, and software systems that implement models of neural systems (for perception, motor control, or multisensory integration). The implementation of neuromorphic computing on the hardware level can be realized by oxide-based memristors,[6] spintronic memories,[7] threshold switches, and transistors.[8] A key aspect of neuromorphic engineering is understanding how the morphology of individual neurons, circuits, applications, and overall architectures creates desirable computations, affects how information is represented, influences robustness to damage, incorporates learning and development, adapts to local change (plasticity), and facilitates evolutionary change. Neuromorphic engineering is an interdisciplinary subject that takes inspiration from biology, physics, mathematics, computer science, and electronic engineering to design artificial neural systems, such as vision systems, head-eye systems, auditory processors, and autonomous robots, whose physical architecture and design principles are based on those of biological nervous systems.[9]