Framework and Schema for Semantic Web Knowledge Bases

AAAI Conferences

There is a growing need for scalable semantic web repositories which support inference and provide efficient queries. There is also a growing interest in representing uncertain knowledge in semantic web datasets and ontologies. In this paper, I present a bit vector schema specifically designed for RDF (Resource Description Framework) datasets. I propose a system for materializing and storing inferred knowledge using this schema. I show experimental results that demonstrate that this solution simplifies inference queries and drastically improves results. I also propose and describe a solution for materializing and persisting uncertain information and probabilities. Thresholds and bit vectors are used to provide efficient query access to this uncertain knowledge. My goal is to provide a semantic web repository that supports knowledge inference, uncertainty reasoning, and Bayesian networks, without sacrificing performance or scalability.


Eliciting Categorical Data for Optimal Aggregation

Neural Information Processing Systems

Models for collecting and aggregating categorical data on crowdsourcing platforms typically fall into two broad categories: those assuming agents honest and consistent but with heterogeneous error rates, and those assuming agents strategic and seek to maximize their expected reward. The former often leads to tractable aggregation of elicited data, while the latter usually focuses on optimal elicitation and does not consider aggregation. In this paper, we develop a Bayesian model, wherein agents have differing quality of information, but also respond to incentives. Our model generalizes both categories and enables the joint exploration of optimal elicitation and aggregation. This model enables our exploration, both analytically and experimentally, of optimal aggregation of categorical data and optimal multiple-choice interface design.


A Fuzzy Logic Approach to Target Tracking

arXiv.org Artificial Intelligence

This paper discusses a target tracking problem in which no dynamic mathematical model is explicitly assumed. A nonlinear filter based on the fuzzy If-then rules is developed. A comparison with a Kalman filter is made, and empirical results show that the performance of the fuzzy filter is better. Intensive simulations suggest that theoretical justification of the empirical results is possible.


Inference Aided Reinforcement Learning for Incentive Mechanism Design in Crowdsourcing

Neural Information Processing Systems

Incentive mechanisms for crowdsourcing are designed to incentivize financially self-interested workers to generate and report high-quality labels. Existing mechanisms are often developed as one-shot static solutions, assuming a certain level of knowledge about worker models (expertise levels, costs for exerting efforts, etc.). In this paper, we propose a novel inference aided reinforcement mechanism that acquires data sequentially and requires no such prior assumptions. Specifically, we first design a Gibbs sampling augmented Bayesian inference algorithm to estimate workers' labeling strategies from the collected labels at each step. Then we propose a reinforcement incentive learning (RIL) method, building on top of the above estimates, to uncover how workers respond to different payments.


SHACL Constraints with Inference Rules

arXiv.org Artificial Intelligence

The Shapes Constraint Language (SHACL) has been recently introduced as a W3C recommendation to define constraints that can be validated against RDF graphs. Interactions of SHACL with other Semantic Web technologies, such as ontologies or reasoners, is a matter of ongoing research. In this paper we study the interaction of a subset of SHACL with inference rules expressed in datalog. On the one hand, SHACL constraints can be used to define a "schema" for graph datasets. On the other hand, inference rules can lead to the discovery of new facts that do not match the original schema. Given a set of SHACL constraints and a set of datalog rules, we present a method to detect which constraints could be violated by the application of the inference rules on some graph instance of the schema, and update the original schema, i.e, the set of SHACL constraints, in order to capture the new facts that can be inferred. We provide theoretical and experimental results of the various components of our approach.