Goto

Collaborating Authors

3.2 Assessing the Risk of Artificial Intelligence

#artificialintelligence

Every step forward in artificial intelligence (AI) challenges assumptions about what machines can do. Myriad opportunities for economic benefit have created a stable flow of investment into AI research and development, but with the opportunities come risks to decision-making, security and governance. Increasingly intelligent systems supplanting both blue- and white-collar employees are exposing the fault lines in our economic and social systems and requiring policy-makers to look for measures that will build resilience to the impact of automation. Leading entrepreneurs and scientists are also concerned about how to engineer intelligent systems as these systems begin implicitly taking on social obligations and responsibilities, and several of them penned an Open Letter on Research Priorities for Robust and Beneficial Artificial Intelligence in late 2015.1 Whether or not we are comfortable with AI may already be moot: more pertinent questions might be whether we can and ought to build trust in systems that can make decisions beyond human oversight that may have irreversible consequences. By providing new information and improving decision-making through data-driven strategies, AI could potentially help to solve some of the complex global challenges of the 21st century, from climate change and resource utilization to the impact of population growth and healthcare issues.


Research Priorities for Robust and Beneficial Artificial Intelligence

AI Magazine

This article gives numerous examples (which should by no means be construed as an exhaustive list) of such worthwhile research aimed at ensuring that AI remains robust and beneficial. In this context, the criterion for intelligence is related to statistical and economic notions of rationality -- colloquially, the ability to make good decisions, plans, or inferences. The adoption of probabilistic representations and statistical learning methods has led to a large degree of integration and crossfertilization between AI, machine learning, statistics, control theory, neuroscience, and other fields. The establishment of shared theoretical frameworks, combined with the availability of data and processing power, has yielded remarkable successes in various component tasks such as speech recognition, image classification, autonomous vehicles, machine translation, legged locomotion, and question-answering systems. As capabilities in these areas and others cross the threshold from laboratory research to economically valuable technologies, a virtuous cycle takes hold whereby even small improvements in performance have significant economic value, prompting greater investments in research.


Research Priorities for Robust and Beneficial Artificial Intelligence

AI Magazine

Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to investigate how to maximize these benefits while avoiding potential pitfalls. This article gives numerous examples (which should by no means be construed as an exhaustive list) of such worthwhile research aimed at ensuring that AI remains robust and beneficial.


The case for taking AI seriously as a threat to humanity

#artificialintelligence

Stephen Hawking has said, "The development of full artificial intelligence could spell the end of the human race." Elon Musk claims that AI is humanity's "biggest existential threat." That might have people asking: Wait, what? But these grand worries are rooted in research. Along with Hawking and Musk, prominent figures at Oxford and UC Berkeley and many of the researchers working in AI today believe that advanced AI systems, if deployed carelessly, could end all life on earth. This concern has been raised since the dawn of computing. But it has come into particular focus in recent years, as advances in machine-learning techniques have given us a more concrete understanding of what we can do with AI, what AI can do for (and to) us, and how much we still don't know. Some of them think advanced AI is so distant that there's no point in thinking about it now. Others are worried that excessive hype about the power of their field might kill it prematurely. And even among the people who broadly agree that AI poses unique dangers, there are varying takes on what steps make the most sense today.


AI Dangers

Communications of the ACM

In January 2015, a host of prominent figures in high tech and science and experts in artificial intelligence (AI) published a piece called "Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter," calling for research on the societal impacts of AI. Unfortunately, the media grossly distorted and hyped the original formulation into doomsday scenarios. Nonetheless, some thinkers do warn of serious dangers posed by AI, tacitly invoking the notion of a Technological Singularity (first suggested by Good8) to ground their fears. According to this idea, computational machines will improve in competence at an exponential rate. They will reach the point where they correct their own defects and program themselves to produce artificial superintelligent agents that far surpass human capabilities in virtually every cognitive domain.