Goto

Collaborating Authors

Best and No.1 Introduction to Reinforcement Learning! - WriteX.today

#artificialintelligence

Let's see some simple example which helps you to illustrate the reinforcement learning mechanism. Consider the scenario of teaching new tricks to your cat. There are three approaches to implement a Reinforcement Learning algorithm. In a value-based Reinforcement Learning method, you should try to maximize a value function V(s). In this method, the agent is expecting a long-term return of the current states under policy π.


Modern Reinforcement Learning: Deep Q Learning in PyTorch

#artificialintelligence

In this complete deep reinforcement learning course you will learn a repeatable framework for reading and implementing deep reinforcement learning research ... In this complete deep reinforcement learning course you will learn a repeatable framework for reading and implementing deep reinforcement learning research papers. You will read the original papers that introduced the Deep Q learning, Double Deep Q learning, and Dueling Deep Q learning algorithms. You will then learn how to implement these in pythonic and concise PyTorch code, that can be extended to include any future deep Q learning algorithms. These algorithms will be used to solve a variety of environments from the Open AI gym's Atari library, including Pong, Breakout, and Bankheist. You will learn the key to making these Deep Q Learning algorithms work, which is how to modify the Open AI Gym's Atari library to meet the specifications of the original Deep Q Learning papers.


Learning in PyTorch Modern Reinforcement Learning: Deep Q

#artificialintelligence

You will then learn how to implement these in pythonic and concise PyTorch code, that can be extended to include any future deep Q learning algorithms. These algorithms will be used to solve a variety of environments from the Open AI gym's Atari library, including Pong, Breakout, and Bankheist. You will learn the key to making these Deep Q Learning algorithms work, which is how to modify the Open AI Gym's Atari library to meet the specifications of the original Deep Q Learning papers. Also included is a mini course in deep learning using the PyTorch framework. This is geared for students who are familiar with the basic concepts of deep learning, but not the specifics, or those who are comfortable with deep learning in another framework, such as Tensorflow or Keras.


Rl-Competition

AITopics Original Links

Every year there is a brand new reinforcement learning competition. This usually consists of new organizers, and a new website! Instead of replacing the old website every year and breaking hundreds of links, we use a different subdomain each year. So, this page will always exist at: http://rl-competition.org And the specific websites for different years are: NIPS Reinforcement Learning Workshop: Benchmarks and Bakeoffs NIPS Reinforcement Learning Workshop: Benchmarks and Bakeoffs II ICML Reinforcement Learning and Benchmarking Event NIPS Workshop: The First Annual Reinforcement Learning Competition The 2008 Reinforcement Learning Competition:: http://2008.rl-competition.org


The Reinforcement Learning Competition 2014

AI Magazine

Reinforcement learning is one of the most general problems in artificial intelligence. It has been used to model problems in automated experiment design, control, economics, game playing, scheduling and telecommunications. The aim of the reinforcement learning competition is to encourage the development of very general learning agents for arbitrary reinforcement learning problems and to provide a test-bed for the unbiased evaluation of algorithms.